Summary

Background: Primordial germ cell (PGC) specification mechanisms have been categorized into two modes: cytoplasmic inheritance and zygotic induction. Cytoplasmic inheritance (e.g., germ plasm) has been demonstrated experimentally in many species (Table S1). Histological studies of insects branching basally to Holometabola (the Hemimetabola), in contrast, have reported the absence of both germ plasm and pole cells in nearly all of these taxa [3, 6] (Figure 1A; Table S1). Studies of molecular markers for PGCs in hemimetabolous insects have been limited to the highly atypical parthenogenetic embryos of the pea aphid Acyrthosiphon pisum, a milkweed bug, and several orthopteran species (Table S1), yet there is no conserved pattern of PGC origin across these taxa.

Results: Here we show that in a basally branching insect, the cricket Gryllus bimaculatus, conserved germ plasm molecules are ubiquitously, rather than asymmetrically, localized during oogenesis and early embryogenesis. Molecular and cytological analyses suggest that Gryllus PGCs arise from abdominal mesoderm during segmentation, and twist RNAi embryos that lack mesoderm fail to form PGCs. Using RNA interference we show that vasa and piwi are not required maternally or zygotically for PGC formation but rather are required for primary spermatogonial divisions in adult males.

Conclusions: These observations suggest that Gryllus lacks a maternally inherited germ plasm, in contrast with many holometabolous insects, including Drosophila. The mesodermal origin of Gryllus PGCs and absence of instructive roles for vasa and piwi in PGC formation are reminiscent of mouse PGC specification and suggest that zygotic cell signaling may direct PGC specification in Gryllus and other Hemimetabola.

Introduction

Of the many specialized cell types that comprise an animal’s body, only one is capable of contributing genetic information to the next generation: the germ cells. The restriction of reproductive potential to a small subset of cells is a universal process across sexually reproducing animals and represents a profound evolutionary novelty likely required for the evolution of multicellularity [1]. The molecular mechanisms that specify these cells, however, are remarkably diverse between taxa [2–5] and only well understood in a handful of model organisms.

Primordial germ cell (PGC) specification mechanisms have been categorized into two modes: cytoplasmic inheritance and zygotic induction [3, 4, 6]. Cytoplasmic inheritance (e.g., in Drosophila melanogaster) involves the localization of maternal mRNAs and proteins (germ plasm) to a subcellular region of the oocyte. Germ plasm is necessary and sufficient to induce PGC fate. In zygotic induction (e.g., in Mus musculus), by contrast, there is no germ plasm, and PGCs instead form in response to inductive signals from neighboring somatic cells [7].

Within insects, cytoplasmic inheritance appears to be a derived character confined primarily to the holometabolous insects [8] (Figure 1A; see also Table S1 available online), where germ plasm has been demonstrated experimentally in many species (Table S1). Histological studies of insects branching basally to Holometabola (the Hemimetabola), in contrast, have reported the absence of both germ plasm and pole cells in nearly all of these taxa [3, 6] (Figure 1A; Table S1). Studies of molecular markers for PGCs in hemimetabolous insects have been limited to the highly atypical parthenogenetic embryos of the pea aphid Acyrthosiphon pisum, a milkweed bug, and several orthopteran species (Table S1), yet there is no conserved pattern of PGC origin across these taxa.

In this study, we use multiple conserved molecular markers and RNAi to characterize PGC formation in the cricket Gryllus bimaculatus (Orthoptera), a hemimetabolous model species for studying the development of basally branching insects [9]. We provide several lines of evidence that Gryllus PGCs form from the abdominal mesoderm via inductive signaling and discuss the implications of these results for the evolution of germ plasm and the possibility of an ancient relationship between bilaterian PGCs and mesoderm.
segment. These cells possessed universal PGC characteristics [3] of large nuclei with diffuse chromatin and a single large nucleolus (Figure 1 F). Based on these gene expression, nuclear morphology, and embryonic location data, we conclude that these cells are *Gryllus* PGCs. We also examined the expression of four additional putative candidate PGC marker genes (*tudor*, *piwi-2*, *AGO3-A*, and *AGO3-B*) but found that they were not specific PGC markers in *Gryllus* embryos (Figures S1 B and S1F).

Gryllus Germline Markers Do Not Localize within Oocytes or Reveal PGCs in Early Embryos

We next examined the expression of *Gryllus* PGC markers during earlier stages of embryogenesis and oogenesis to test whether they revealed the presence of germ plasm in oocytes or PGCs in early embryos. All genes tested were consistently ubiquitous throughout oogenesis and never localized asymmetrically within the ooplasm (Figures 1 G–1J, S1D, and S1F), although Vasa and Piwi proteins were enriched around the oocyte nucleus (Figures 1G–1J). In blastoderm-stage embryos (stages 1–3) and early germband-stage embryos (stage 4), *piwi* (Figures 1K–1N, S1E, and S2G–S2P), *vasa* (Figures 1O–1R, S1E, and S2Q–S2Z), *bol*, and *gcl* (Figures S2A–S2F) were expressed ubiquitously at low levels and showed no asymmetric localization within the embryo. These results are in stark contrast to the posterior accumulation of PGC determinants in *Drosophila* oocytes and early embryos [16, 18–20] and suggest an absence of germ-plasm-driven PGC specification in *Gryllus*.

Gryllus PGCs Arise De Novo during Midembryogenesis

To determine the embryonic origin of *Gryllus* PGCs, we examined the expression of *piwi* and *vasa* transcripts and proteins throughout abdominal elongation and segmentation. During early germband stages (stage 4), we detected low-level ubiquitous expression of both genes in all ectodermal and mesodermal cells (Figures 2 A–2B and S3A–S3B). It was not until thoracic limb bud enlargement began (stage 5) that *piwi* transcripts were detected at higher levels in two subsets of cells in abdominal segments A2–A4 among the lateral abdominal mesoderm (Figures 2 C and 2C). As appendage elongation began (stage 6), *piwi*-positive cells split into distinct groups along the anterior-posterior axis (Figures 2 E and E), and Piwi protein levels rose in these cells (Figures 2 E and 2E). During morphological segmentation of the abdomen (stages 7–9) these cell groups coalesced into four to six distinct clusters adjacent and dorsal to the coelomic pouches in segments A2–A4 and continued to express high levels of *piwi* transcripts and protein (Figures 2F–2H and S3A–S3F). *vasa* transcript and protein expression was similar to that of *piwi*, but *vasa* became enriched in PGCs slightly later than *piwi* and showed higher expression levels in the soma (Figure S3).

Interestingly, hallmarks of active transcription were observed in PGCs throughout all stages examined (Figures...
This is consistent with Gryllus PGC formation via active transcriptional response to inductive signaling between cells rather than PGCs being a transcriptionally quiescent subpopulation of early-segregated cells as seen in Drosophila and other species with germ plasm [21].

Consistent with a conversion of presumptive mesoderm cells to PGCs beginning at stage 5, the nuclear morphology of mesodermal cells correlated with the relative levels of Piwi expression throughout development. At stage 4, all mesoderm cells had uniform Piwi expression and nuclear morphology, relatively compact chromatin, and multiple nucleoli (Figures 3A and 3A'). As Piwi expression increased in presumptive PGCs, their nuclei became larger with increasingly diffuse chromatin, whereas nuclei of neighboring Piwi-poor cells decreased in size, and their chromatin became compact as they progressed through mesoderm differentiation (Figures 3B–3D'). By stages 8–9, PGCs were clearly distinguished by their high nuclear-cytoplasmic ratio, diffuse chromatin, and single large nucleolus (Figures 3E–3F'), criteria used to identify PGCs in historical studies of Orthoptera and other animals [3]. Following stage 10, PGC clusters merged via short-range cell migration (Figure 3G) and coalesced into two bilateral gonad primordia (Figure 3H) located in segments A3–A4. Thus, Gryllus PGCs do not undergo long-range migration, as they do in many other species including Drosophila [22], but rather arise near the location of the embryonic gonad.

Knockdown of Gryllus piwi or vasa Does Not Disrupt PGC Formation or Maintenance

We knocked down vasa and piwi function using both maternal and zygotic RNAi (mRNAi and eRNAi, respectively) and confirmed knockdown using qPCR and immunostaining (Figures 4A, 4B, 4E, and 4H). In contrast to Drosophila, in which vasa and piwi are required maternally for embryonic PGC formation [15, 18], mRNAi against vasa and piwi did not disrupt PGC formation in Gryllus embryos (Figures 4C–4H), and there was no significant difference in the number of PGCs in either vasa or piwi mRNAi or eRNAi embryos relative to controls (Figures 4I and 4J). Furthermore, female embryos laid by mothers injected with vasa or piwi double-stranded (ds)RNA ultimately grew into fertile adults with fully functioning ovaries (Figure 4K–4M). In contrast to the Drosophila requirement for vasa and piwi in oogenesis and axial patterning [15, 23], Gryllus females injected with vasa or piwi dsRNA displayed no defects in egg laying, oogenesis, or axial patterning (Figures S4A–S4C). Moreover, double knockdown of vasa + piwi maternally or zygotically did not
disrupt PGC formation or axial patterning (Figures S4C–S4E), indicating that these genes do not act redundantly to direct PGC specification.

vasa and piwi Play Roles in Gryllus Spermatogenesis

In mice, which lack germ plasm and specify PGCs from presumptive mesoderm via signaling, vasa and piwi are not required for PGC specification but do mark established PGCs of both sexes and play roles in adult spermatogenesis [24, 25]. We tested whether these genes were required for adult spermatogenesis in Gryllus by injecting adult males with dsRNA for vasa or piwi to achieve paternal RNAi (pRNAi). Gryllus testes comprise 200–300 testioles (sperm tubules) [26], within which spermatogenesis proceeds from anterior to posterior (Figures 5A and S5A–S5G). The anterior region of each testiole expresses Vasa and Piwi proteins (Figures SST and SSU) and contains primary and secondary spermatogonia (Figure 5A). Knockdown of vasa or piwi via pRNAi severely reduced spermatogenial region length (Figure 5H). In both vasa and piwi pRNAi testes, meiotic spermatocytes were found in the anterior region of testioles, in some cases almost abutting primary spermatogonia (Figures 5C, 5D, 5F, and 5G, yellow arrowheads), and secondary spermatonial cysts were reduced (Figures 5C, 5D, and 5G, red arrows) or absent (Figure 5F), suggesting that the mitotic divisions of primary spermatogonia were affected. The misregulation of primary spermatocyte divisions was not due to absence of the germ-line stem cell niche (apical cell), which was present in piwi and vasa pRNAi testes (Figures 5E–5G, asterisks, and S5B, S5H, and S5N). Post spermatogonial stages of spermatogenesis appeared unaffected (Figures S5I–S5M and S5O–S5S). These data indicate that, as in mice and other animals (see Discussion), piwi and vasa play a role in Gryllus gametogenesis in adult males.

Mesoderm Is Required for Gryllus PGCs

Our observations thus far suggested that PGCs arise from among mesodermal cells during abdominal segmentation. To test this hypothesis, we took advantage of the conserved role of the twist gene in mesoderm development [27] to ask whether PGCs could form if mesoderm development was compromised. *Gryllus* twist is expressed in the abdominal mesoderm beginning during axial elongation, including in cells of the region where PGCs arise (Figures S6A–S6D2). In *Drosophila*, twist mutants display gastrulation defects [28], yet PGCs form normally because PGC specification occurs via germ plasm well before gastrulation (Figures 6A and 6E). In *Gryllus*, twist eRNAi similarly causes disorganization or loss of major mesodermal structures within all body segments (Figures 6F and 6G, compare to 6B and 6C). In contrast to *Drosophila*, however, 49% of *Gryllus* twist eRNAi embryos lack PGCs, compared to 0% of controls (p < 0.01, Figures 6D and 6G), and those twist eRNAi embryos that specify PGCs have fewer than controls (p = 0.05, Figure 6H). These results are consistent with the hypothesis that PGCs form from a subset of abdominal mesoderm. Alternatively, PGCs may be formed normally at stage 5 but fail to be maintained due to absent or compromised mesodermal surroundings.

Discussion

We have shown that neither vasa nor piwi are required maternally or zygotically for the formation of functional PGCs (Figures 4 and S4) but instead play a role in spermatogonial divisions in adult males. Our results differ from those of analogous experiments in *D. melanogaster* [15, 18], indicating that the functions of these genes have diverged between *Gryllus* and *Drosophila*. Although these genes are not required for *Gryllus* PGC formation, we propose that, together with *gcl* and *boule* expression (Figure S2) and the transition from mesodermal to PGC-like morphology in situ (Figure 3), vasa and piwi are nevertheless informative *Gryllus* PGC markers, despite their pleiotropic roles in other developmental
processes. We cannot eliminate the possibility that untested marker genes might show an earlier PGC specification event than the one we identify in stage 5 (Figure 2C). However, given the conserved coexpression of the tested genes in PGCs of multiple metazoans, we believe it unlikely that all four would be absent from *Gryllus* PGCs at the time of their specification. Evidence from multiple systems suggests that functional divergence of *vasa* and *piwi* is widespread. In

![Figure 4. *vasa* and *piwi* Are Not Required for *Gryllus* PGC Specification](image)

(C–H) Piwi-positive PGCs (arrowheads) form in *vasa* RNAi embryos, and Vasa-positive PGCs form in *piwi* RNAi embryos. Consistent with qPCR results, *vasa* mRNAi (E; 100%, n = 9) and *piwi* mRNAi (H; 60%, n = 10) abolished respective protein expression. eRNAi produced similar results (not shown).

(I and J) PGC quantification confirms that PGC formation is not reduced (Student’s t test: *vasa* mRNAi p = 0.07; *vasa* eRNAi p = 0.57; *piwi* mRNAi p = 0.24; *piwi* eRNAi p = 0.77).

(K–M) Ovaries from adult offspring of *vasa* and *piwi* pRNAi mothers (L–M) are indistinguishable from uninjected controls (K). Scale bar represents 50 μm in (C)–(H).

See also Figure S4.

Figure 5. *piwi* and *vasa* pRNAi Causes Defects in Spermatogonial Proliferation

(A) Wild-type *Gryllus* testes showing the stages of spermatogenesis.

(B–G) White bars in (B)–(D) indicate the spermatogonial zone containing secondary spermatogonia (SSG, red arrows). The zone of primary spermatocytes (PSC, yellow arrowheads) nearly abuts the primary spermatogonial zone in *piwi* (C and F) and *vasa* (D and G) pRNAi testes because of the shortened SSG zone but is absent from the anterior region of control testes that have extensive SSG populations (B and E). Higher magnification (E–G) is shown of anterior testes regions in control (E), *piwi* RNAi (F), and *vasa* RNAi (G) testes.

(H) *vasa* or *piwi* paternal RNAi results in a shortened spermatogonial zone compared to controls (Student’s t test: *p < 0.01, +p = 0.06). Scale bar represents 100 μm in (A) and 50 μm in (B) (applies also to C–G). Anterior is up in (A)–(G). See also Figure S5.
D. melanogaster, where both genes were first discovered, mutations in vasa or either of the two piwi orthologs (piwi and aubergine) cause defects in germ plasm formation, oogenesis, PGC specification, and posterior patterning [15, 18, 19, 29]. Similarly, vasa and piwi orthologs are required for PGC specification, development, and oogenesis in C. elegans, D. rerio [see 2], and medaka [30]. In mice, however, vasa is expressed in embryonic PGCs of both sexes, but vasa−/− homozygotes display no discernable defects in PGC specification or oogenesis and instead show a male-specific defect in spermatogenesis [25]. Similarly, knockout mice for any of the three PIWI family homologs display spermatogenic defects only, with no defects in females [24, 31, 32]. Our data therefore suggest that the roles of Gryllus vasa and piwi are similar to those of their mouse homologs. Functional genetic and gene expression data from insects (Table S1) suggest that, in this clade, an instructive role for these genes in PGC formation may be restricted to the Holometabola, perhaps concomitant with the co-option of oskar to the top of the PGC specification pathway [14]. Consistent with this hypothesis, vasa is dispensable for PGC formation in another hemimetabolous insect, the milkweed bug, Oncopeltus fasciatus [33].

Our data indicate that a zygotic mode of PGC specification is likely present in Gryllus, whereby PGCs appear to arise from presumptive mesoderm. Because twist is expressed broadly in mesodermal cells (Figure S6), our twist RNAi results could indicate either that mesoderm gives rise to PGCs directly or that mesoderm is required to maintain PGCs (we note that these interpretations are not mutually exclusive). However, our morphological (Figure 3) and gene expression (Figures 2, S3, and S6) analyses strongly suggest that cells convert from mesodermal to PGC fate in situ. Alternatively, an undifferentiated population of PGC precursors could exist that do not express any of the tested PGC marker genes but are induced to adopt PGC fate by adjacent mesodermal cells. If this is the case, however, we note that such pluripotent precursors cannot require maternal provision of vasa or piwi and would most likely be specified by zygotic mechanisms.

Several lines of evidence suggest that a cell lineage relationship between mesoderm and the germline may be a cell type association predating the emergence of Bilateria. Bilateral germ cells are strikingly similar in gene expression and cytological characteristics to endomesodermally derived stem cells in bilaterian outliers. Whereas nonbilaterians do not have a dedicated germline per se, their pluripotent stem cell populations serve the function of the germline (reviewed in [34]), and cnidarian pluripotent stem cells are derived from endomesoderm during embryogenesis [35–39]. Within bilaterians, gametogenic cells are consistently described as arising from gonadal epithelia of mesodermal origin in most arthropods and many marine invertebrates (reviewed in [3]). In many spiralians, cytological, cell lineage, and molecular data indicate that PGCs originate from a multipotent mesodermal precursor or precursors (see also [3, 40–47]). Recent studies suggest that mouse PGCs may default to a mesodermal specification program if germ line induction signals are absent [48, 49]. The work presented here illuminates broad similarities between PGC specification and vasa function in Gryllus and in the mouse. Future work will be required to explore this apparent similarity in greater depth and to determine the extent of conservation in the developmental and molecular processes involved in specifying the germline across Bilateria.

Experimental Procedures

Gryllus husbandry, gene expression analysis, mRNAi, eRNAi, and phenotypic analysis were carried out as previously described [50]. For pRNAi, 5 μl of 3 μg/ml dsRNA was injected into the coelomic cavity of adult males.
1–3 days after the final molt to sexual maturity, and testes of injected males were dissected for analysis 7 days after injection (details in Supplemental Experimental Procedures).

Accession Numbers

Sequences have been deposited in GenBank (accession numbers KC242803–KC242808).

Supplemental Information

Supplemental Information includes six figures, Supplemental Experimental Procedures, and one table and can be found with this article online at http://dx.doi.org/10.1016/j.cub.2013.03.063.

Acknowledgments

National Science Foundation (NSF) IOS-0817678 and IOS-1257217 to C.G.E. and NSF predoctoral fellowships to B.E.-C. and S.D. supported this work. We thank Paul Lasko and Siegfried Roth for reagents, Tony De Tomaso for use of the Olympus compound microscope, Franz Kainz for performing twist in situ hybridization, and members of the Extavour laboratory for discussion.

Received: January 4, 2013
Revised: March 23, 2013
Accepted: March 22, 2013
Published: April 25, 2013

References

Germ Cell Specification Requires Zygotic Mechanisms Rather Than Germ Plasm in a Basally Branching Insect

Ben Ewen-Campen, Seth Donoughe, Donald Nat Clarke, and Cassandra G. Extavour

Supplemental Inventory

- Supplemental Information
 - Figures S1–S6
 - Table S1
- Supplemental Experimental Procedures
- Author Contributions
- Supplemental References
Figure S1, Related to Figure 1. Phylogenetic Analysis of *Gryllus* Germ Line Genes, and Expression Patterns of Additional Germ Line Marker Candidates.
(A and B) Maximum-likelihood phylogenetic reconstruction of Vasa and Piwi amino acid sequences. (A) As previously reported [1], Gryllus Vasa falls clearly within other insect vasa genes, not the PL10/Belle class of RNA helicases. (B) Gryllus possesses two piwi-like genes and two AGO3-like genes, both of which represent species-specific duplications. As only the first identified piwi-like gene [2] was enriched in Gryllus PGCs, we focus the present analyses on this orthologue, which we refer to here simply as piwi as it is clearly orthologous to other animal piwi genes. Note that aubergine is a Drosophila-specific duplication of piwi.

(C) Gryllus PGCs (arrowheads) express high levels of Vasa protein and transcripts of vasa, boule and germ cell less. All genes are also expressed at lower levels throughout the somatic tissues of the embryo.

(D) piwi and vasa transcripts are expressed ubiquitously during all stages of oogenesis and do not localise to the posterior ooplasm.

(E) piwi and vasa transcripts and protein products are expressed ubiquitously in stage 4 embryos. The apparent increased expression levels at the germ band posterior are an artifact of tissue thickness.

(F) top row: tudor, AGO3-A, piwi-2, and AGO3-B transcripts are not localized asymmetrically in oocytes. Bottom row: these genes do not specifically label Gryllus PGCs. In the PGC-containing region (Figure 1B-E) at stage 9, tudor and AGO3-A are detectable in PGCs (arrowheads), but are also expressed throughout the somatic tissues of the embryo (arrows). piwi-2 and AGO3-B are not detected above background levels in stage 8-9 embryos. Arrows mark PGCs recognisable based on morphology and anatomical position independent of gene expression. Anterior is to the left in D and top two rows row of E, and up in C and bottom row of E. Scale bars = 100 μM in C, 500 μM in D; 200 μM in E and top two rows of F; 50 μM bottom row of F.
Figure S2, Related to Figures 1 and 2. Additional Gene Expression Data in Support of the Absence of Germ Plasm in *Gryllus*

(A–F) Expression of *boule* and *gcl*, which mark PGCs in stage 9 embryos (Figure 1) during oogenesis and early embryogenesis. Neither gene is asymmetrically localized in oocytes (A and D; A’ and D’ show sense controls). Both genes are expressed ubiquitously during stages 4 (B and E) and 5 (C and F), and do not reveal any segregated PGCs during these stages.

(G–Z) *piwi* (G–K) and *vasa* (Q–U) expression during blastoderm stages. (L–P and V–Z) Corresponding sense controls. (G’–Z’) Nuclear stains of adjacent panels. *piwi* transcripts are undetectable during blastoderm stages (G–I), and are found ubiquitously at low levels as the germ band condenses (J and K). *vasa* transcripts are undetectable in just-laid eggs (Q), and energids are associated with all nuclei along the A–P axis as they populate the blastoderm surface (R). During subsequent blastoderm divisions (S), *vasa* expression is not localized to any specific subset of nuclei. As the germ band condenses at the posterior of the egg (T, U), *vasa* expression is detected at similar, low levels throughout the germ band but not enriched at the posterior or in any other specific region. A = germ band anterior, P = germ band posterior. Scale bars = 200 μM in (A)–(A’) and (D)–(D’); 100 μM in (B) (applies also to E); 200 μM in (C) (applies also to F), (G), and (Q) (applies also to H–I and R–S, respectively), and (J)–(K), (O)–(P), (T)–(U), and (Y)–(Z). Anterior is to the left in all panels.
Figure S3, Related to Figure 2. Expression of vasa Transcript and Protein throughout Abdominal Segmentation

(A–F) Schematic drawings of Gryllus mid-staged embryos of the stages shown here; boxed grey areas indicate regions shown in panels below. vasa transcripts are expressed ubiquitously during stages 4–4.4 (A and B), and do not reveal the presence of PGCs at this stage, consistent with piwi expression. (C and D) During stages 5 and 7 vasa transcripts do not reveal the presence of PGCs. Asterisks in (C' and D') denote out-of-focus staining in the ventrally located nervous system, which is shown in focus in (G–H). vasa transcripts are detected in PGCs during stage 8 and 9 (E and F). Vasa protein is ubiquitously expressed during stages 4-5 (A'–C', A'–C''). In stage 7 embryos (D' and D''), Vasa protein is strongly enriched in PGCs, and this expression continues in stage 8 and 9 (E'–F' and E'–F''). Arrowheads indicate PGC clusters. T3 = thoracic segment 3; A1, A2 = abdominal segments 1 and 2. Scale bar = 100 μM. Anterior is up in all panels.
Figure S4, Related to Figure 4. Phenotypic Analysis of *vasa* and *piwi* mRNAi, and *vasa* + *piwi* Double eRNAi and mRNAi, in Ovaries and Embryos

(A) Females injected with dsRNA against *vasa* or *piwi* lay numbers of eggs that do not differ significantly from controls (student’s t-test, p>0.05 in every pairwise comparison of *vasa* or *piwi* RNAi with DsRed RNAi on the indicated days post-injection).
(B) Ovaries dissected from *vasa* or *piwi* mRNAi females 10 days after injection are morphologically wild type and contain normal oocytes at all stages of development, despite having transcript levels reduced to less than 5% or 10% of wild type levels, respectively (Figure 6A–6B).

(C) Hatchlings of embryos laid by mRNAi or eRNAi females do not display axial patterning defects, and appear morphologically wild type.

(D) qPCR validation of *vasa* + *piwi* double knockdown following mRNAi and eRNAi. Transcript abundance was normalized to expression of *beta-tubulin*.

(E) As in DsRed RNAi controls (top), *boule*-positive PGCs form in *vasa* + *piwi* double RNAi embryos (bottom). Numbers at bottom left indicate sample sizes. Scale bars = 50 μM in (B) and (E); 2 mM in (C). Anterior is to the left in (B); up in (C) and (E).
Figure S5, Related to Figure 5. \textit{vasa} or \textit{piwi} pRNAi Does Not Disrupt Postspermatogonial Stages of Spermatogenesis in \textit{Gryllus}

Wild type \textit{Gryllus} testis showing the stages of spermatogenesis (A). Primary spermatogonia (PSC) undergo self-renewing divisions, which are thought to occur under the influence of a single apical cell (red arrowheads in B, H, N) that provides a “stem cell niche” analogous to the hub of \textit{Drosophila} testes [3, 4]. Following seven mitotic divisions by cysts of secondary spermatogonia (SSG) enclosed by somatic cell sheaths (yellow arrowheads in D, K, P-Q), the resulting 128 primary spermatocytes (PSC) undergo meiosis (secondary spermatocytes: SSC) to produce 512 clonally related spermatids (ST), which undergo synchronous spermeiogenesis to produce bundles of mature spermatozoa (SZ) [5]. Although \textit{vasa} and \textit{piwi} pRNAi testes display a reduction in the number of secondary spermatogonial cysts (Figure 7), they possess normal apical cells (B, H, N, arrowheads), and cysts proceeding normally through all stages of spermatogenesis (D-G, I-M, O-S), which are surrounded by somatic sheath cells (arrowheads) as in controls. Vasa (T) and Piwi (U) proteins are expressed in the anterior region of testis, which contains primary spermatogonia (arrows) and somatic sheath cells (arrowheads), and is enclosed by a cellular peritoneal sheath (carets). Scale bars = 100 µm in A; 50 µm in (D) (applies also to E–G, J–M, P–S); 25 µm in (B) (applies also to H and N) and (C) (applies also to I and O); 20 µm in (T)–(U).
Figure S6, Related to Figure 6. *twist* Expression in the Abdominal Mesoderm where *Gryllus* Germ Cells Arise

(A–D) Schematic drawings of progressive stages of *Gryllus* embryogenesis; grey box indicates region shown in panels below. *twist* transcripts accumulate in an anterior to posterior progression in abdominal segments, indicated by black arrowheads in (A’), (B1)–(B2), (C’), and (D1)–(D2). Red outlines in (A’), (B1), (C’), and (D1) indicate the regions that become enriched for *piwi* expression at these stages, suggesting that these are the sites of PGC origin and showing that these regions express *twist* at the proposed onset of PGC specification (stage 5). Bottom row shows nuclear staining of corresponding bright field images in the row above. Anteriormost abdominal segment is labeled in each panel. y = yolk. *twist* expression is confined to the mesoderm and absent from the ectoderm, as shown in micrographs of mesodermal focal planes in (B1 and D1), and ectodermal focal planes in (B2 and D2).
Table S1, Related to Figure 1. Data on Insect PGC Origin during Embryogenesis
Please see accompanying Excel file. Only studies directly addressing the mechanism and/or
description of the first embryonic appearance of PGCs are referenced. Numbered references in the
Excel file are listed at the end of this Supplemental Information document.
Supplemental Experimental Procedures

Insect Cultures and Embryonic Staging
Gryllus bimaculatus cultures were maintained as previously described [139] and embryos were staged according to [140]. *Drosophila Oregon R* and *twist* stocks were obtained from the Bloomington Drosophila Stock Center (#5, #2381).

Cloning and Phylogenetic Analysis
Orthologues of *boule*, *tudor*, *germ cell-less*, an additional *piwi*-like gene, and two *AGO3*-related genes were identified in a *Gryllus* developmental transcriptome via reciprocal best BLAST hit analysis against the *Drosophila melanogaster* proteome. *Gryllus twist* was a gift of S. Roth (University of Cologne, Germany).

To resolve the orthology of the four *Gryllus* PIWI family proteins, we used maximum-likelihood based phylogenetic reconstruction as implemented by RAxML v 7.2.8 [141, 142] on the Odyssey Cluster, maintained by the FAS Sciences Division Research Computing Group (Harvard University). The alignment was produced using Muscle [143] and trimmed using Gblocks [144] under the least stringent settings. The best tree and rapid bootstrap analysis were conducted from 2000 independent runs under the WAG model of protein evolution with a gamma distribution of rate heterogeneity.

In Situ Hybridisation
DIG-labeled probes were hybridised at 68°C following standard protocols [139], with 50% polyvinyl alcohol included in the NBT/BCIP development step. Probe lengths were as follows: *vasa*: 1,953 bp; *piwi-1*: 781 bp; *piwi-2*: 821 bp; *AGO3-A*: 760 bp; *AGO3-B*: 832 bp; *germ cell-less*: 1,691 bp; *boule*: 995 bp; *tudor*: 1,707 bp. Our results for *vasa* expression (both mRNA and protein) in *Gryllus* differ from those reported by Mito et al. [1], who failed to identify the germ cell clusters that we observed beginning at stages 6/7 (Figures 1, 4, S1, S4). This discrepancy may be due to the strong nervous system expression of *vasa* that can obscure the relatively weaker PGC expression (their Figures 3I, 3J, 4A-D), and to our use of a species-specific Vasa antibody [2] as opposed to the cross-reactive antibody [145] used by Mito et al.. Mito et al. also reported detection of transient *vasa* mRNA staining at the posterior of stage 4 embryos (their Figure 3C-D), and interpreted it as consistent with Heymons’ 1895 claim that germ cell precursors arose among the posterior germ band mesoderm shortly after gastrulation [125]. However, we found that this apparently stronger expression is due to the thickness of the posterior germ band tissue at these stages. In three in situ hybridisation replicates and ≥30 early stage embryos, *vasa* did not show consistent enrichment in any specific embryonic region before stage 5. We therefore conclude that germ cells are not specified until this stage, in agreement with the majority of previous authors on orthopteran germ cell origin [131-133].

Immunohistochemistry
Primary antibodies used were rabbit anti-Gb-Vasa and anti-Gb-Piwi [2] at 1:300, mouse anti-RNA polymerase II pSer 6 Mab H5 (Covance MMS-129R) 1:100, FITC-conjugated anti-alpha Tubulin (Sigma F2168) 1:100 and rabbit anti-Drosophila Vasa 1:500 (gift of P. Lasko) following standard procedures. Goat anti-rabbit secondary antibodies conjugated to Alexa 488, Alexa 555 or Alexa 568 (Invitrogen) were used at 1:500 or 1:1000. Counterstains were Hoechst 33342 (Sigma B2261) 0.1 to 0.05 µg/ml and FITC-conjugated phalloidin (Sigma P5282) 1 µg/µl.
RNA Interference
dsRNA injection into adult females (maternal RNAi = mRNAi) and newly laid embryos
(embryonic RNAi = eRNAi) was conducted as previously described [2]. dsRNA fragments for
vasa and *piwi* were 541 bp and 646 bp, respectively. For eRNAi double knockdown experiments,
equal volumes of *vasa* and *piwi* dsRNA were mixed prior to injection. For mRNAi double
knockdown experiments, twice the volume of dsRNA as that used for single RNAi experiments
(15 µg each of *vasa* and *piwi* dsRNA, or 30 µg of the DsRed control dsRNA) was injected into
adult females. dsRNA was used at a concentration of 3 µM (mRNAi) and 5 µM (eRNAi and
pRNAi).

qPCR Analysis of Knockdown
qPCR was used to verify RNAi efficacy as follows: total RNA was extracted from RNAi-treated
ovaries or stage 8-9 (day 4) embryos using TRIzol (Invitrogen) and including a 30-minute DNase
digestion at 37° C to remove genomic contamination. Equal volumes of RNA were used as
template for first strand cDNA synthesis using SuperScript III (Invitrogen) including a no
reverse transcriptase control. cDNA was diluted 1:5 prior to qPCR. qPCR was conducted using
PerfeCta SYBR Green SuperMix (Low ROX, Quanta Biosciences) in a Stratagene MxP3005
machine. Primers amplifying single amplicons of *piwi* (129 bp; F: TCTGGCCTACTACTTTCAAGC; R: AGAGTTTCCCCGATGAACACG), *vasa* (150 bp; F:
GAACATTTGTGAGCCTCATGC ; R: TTGCTGAGCCTGGTGGTAT) and beta-tubulin (166
bp; F: TGGACTCCGTCCGTAGGCC; R: TCGCAGCTTCGCGCCTCCT) were used. Each
reaction was conducted in triplicate, and fluorescence measurements were normalised and
background-subtracted using the ROX dye present in the PCR reactions.

C_t values were used to calculate fold change compared to DsRed-injected controls using
the $2^{-∆∆Ct}$ method [146]. Triplicate C_t values were averaged and the standard deviation was
propagated using standard methods.

Imaging and Image Analysis
Micrographs were captured with AxioVision v.4.8 driving a Zeiss Stereo Lumar equipped with
an AxioCam MRc camera, Zen Blue 2011 driving a Zeiss Stereo Zoom equipped with an
AxioCam HRc camera, a Zeiss Axio Imager equipped with an AxioCam MRm camera using
epi fluorescence either with or without an Apotome, or an Olympus IX71 equipped with a
Hamamatsu C10600-108 camera. Confocal microscopy was performed with a Zeiss LSM 710 or
780 confocal, using comparable gain, offset, and averaging parameters for all samples. Image
analyses were performed with AxioVision v.4.8, Zen 2009 or Zen 2011 (Zeiss), and figures were
assembled in Photoshop CS4, InDesign CS4, or Illustrator CS4 (Adobe). For confocal images
shown in Figures 1E; 2A”-H”; 4C-H; 6C’ and G’; S3A”-F””, a maximum-intensity projection of
multiple optical sections of the antibody staining was superimposed over a single optical section
of the nuclear counterstain for visual clarity. All other confocal micrographs are maximum
intensity projections (Figures 2A”-H”; 3G and H; S3A”-F”), three-dimensional projections
(Figure 6B, F) or single optical sections (all other confocal micrographs).

Author Contributions
BE-C and CGE designed research, analysed data and wrote the paper; experiments were carried
out by SD (*twist* eRNAi experiment), DNC (pRNAi egg-laying and embryonic survival scoring,
PGC migration analysis, CGE (nuclear morphology analysis, *twist* in situ hybridisation analysis, spermatogenesis analysis of pRNAi experiments) and BE-C (all other experiments); CGE obtained funding for the research.

Supplemental References

<table>
<thead>
<tr>
<th>Insect Order</th>
<th>Species</th>
<th>Presumptive PGC Origin</th>
<th>Mode of PGC Identification</th>
<th>PGC Identification Criteria</th>
<th>Functional or Experimental Evidence</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coleoptera</td>
<td>Acantholytus lucidus</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM, LBM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Andrena xylorhoea</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM, MM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Anoplognathus guatemalensis</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Anoplognathus nicaraguensis</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Calliphora erythrocephala</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Condylus capitatus</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM, TBM, LBM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Chironomus sp.</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM, MM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Cingia elizabethae</td>
<td>n(9)</td>
<td>nул</td>
<td>m</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Cryptophlebia conspersata</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Cynops flavigaster</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Dicyphus silvestris</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Dicyphus ypsilophaetes</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Dorsiphilus anthracosoma</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Euphoria pygmaea</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Lucidus capricornis</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Lucidus cervicornis</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Methaphoia ericetorum</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Merxia americana</td>
<td>Blastoderm</td>
<td>Pole cell</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Merxia merxia</td>
<td>Blastoderm</td>
<td>Pole cell</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Meso askervix</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM, MM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Mycophaga aenea</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Mycophaga aurivestis</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Mycophaga ephelis</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Neosopsyllus fasciatus</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Ctenocephalides felis</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Smittia sp.</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Simulium pictipes</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Sciara coprophila</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Rhynchosciara americana</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Phormia regina</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM, TBM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Phoenicia sericata</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Mycophila speyeri</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Musca domestica</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Bassinella bimaculata</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Zosteropogon sp.</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Setosina sp.</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>Ceratocanthus littoralis</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Hyalophora cecropia</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Aleurodes pampyris</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Anisoptera percridis</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Bembecia tabaci</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Blattella germanica</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Blattella germanica</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Blattella germanica</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Blattella germanica</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Blattella germanica</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Blattella germanica</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Blattella germanica</td>
<td>Blastoderm</td>
<td>Pole cells</td>
<td>GP</td>
<td>LM</td>
<td>N</td>
</tr>
</tbody>
</table>

References

[47-54] [45-53] [42-50] [39-41] [37-46] [35-44] [33-42] [31-40] [29-38] [27-36] [25-34] [23-32] [21-30] [19-28] [17-26] [15-24] [13-22] [11-20] [9-18] [7-16] [5-14] [3-12] [1-11]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Order</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropterygidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hymenoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thysanoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psocoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phthiraptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plecoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zygoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuroptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1] Species name is shown as reported in the primary data reference, listed alphabetically within an insect order.
[3] LM = light microscope/histological analysis, of either whole mounts or sections; TEM = transmission electron microscopy; SEM = scanning electron microscopy; EM = enzymatic markers; MM = molecular markers; LI = cell lineage studies.
[4] + = yes; Y = no. Includes data derived from functional genetic evidence and/or physical perturbation/ablation.
[5] Since direct comparison of the duration of stages of development in different species is not appropriate due to differences in culture conditions, we describe here developmental stages rather than absolute time.
[6] Pole cell(s) = Drosophila-like PGC formation at the blastoderm posterior; PV = posterior ventral.
[7] In embryos of Acrysta taeniata, Propilus americana and Propilus metanous, a single pole cell (PGC) gives rise to all germ line cells.
[8] nd = no data; for Clogmia albipunctata pole cells have been specifically noted as absent, but no hypotheses on PGC origin have been proposed in the literature.
[9] Copidosoma finestrata is unusual among insects in that it displays holoblastic cleavage; rather than specific cleavage in early development. It is the name given to the small blastoderm formed at second cleavage, which inherits the oosome (germ plasm) and is the primordial germ cell.