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Synopsis A key focus of evolutionary developmental biology (evo–devo) in recent years has been to elucidate the

evolution of developmental mechanisms as a means of reconstructing the hypothetical last common ancestors of various

clades. Prominent among such reconstructions have been proposals as to the nature of the mysterious ‘‘Urbilateria,’’

originally defined as the last common ancestor of the extant Bilateria (protostomes and deuterostomes). Indeed, drawings

of this animal can now be found, as well as detailed information on the genetics and morphological processes that it used

to construct its gut, heart, eyes, appendages, segments, and body regions. Perhaps surprisingly, however, no explanations

have yet been offered as to how this animal might have achieved the successful reproduction that must have been

necessary for it to give rise to those lineages that are ancestral to today’s diverse clades. The present article examines the

comparative data available to date on the specification of the only cells containing the genetic hereditary material,

the germ cells, and speculates on the possible evolutionary and developmental origin of the Urbilaterian germ line.

Introduction

‘‘It is perhaps an understatement to say that

difficulties confront attempts to infer evolutionary

events that occurred during the early evolution

of multicellular animals.’’ (Blackstone and

Ellison 2000, p 102)

Popular conclusions about the morphological and

developmental characteristics of Urbilateria have

been reached largely through the study of extant

species (Balavoine and Adoutte 2003; Carroll et al.

2005; Gilbert and Singer 2006). Comparisons of the

patterns of gene expression and, to a lesser extent,

comparative morphology, have been used as tools

in the dig for last common ancestors (LCAs)

(De Robertis and Sasai 1996; Kimmel 1996).

The result has been a rather detailed description of

the genetic networks, or at least major genetic

players, which are proposed to have been active in

Urbilateria to give it various features, including axial

polarity (Martindale 2005; Marcellini 2006), body

regionalization (Pearson et al. 2005), light-sensing

cells (Kozmik et al. 2003; Gehring 2005; Kozmik

2005), a heart or circulatory system (Bodmer and

Venkatesh 1998) and a regionalized nervous system

(Lichtneckert and Reichert 2005). No suggestions

have been forthcoming, however, as to how this

animal, whether more or less complex in body

organization, might have made gametes, ensured

their fertilization if necessary, and given rise to the

first generation of protostome and deuterostome

LCAs. Here, I address two questions about the

germ line of Urbilateria: (1) Did it have a dedi-

cated germ cell population? (2) If so, how was it

specified?

The germ line

‘‘It is the mutual interest of genes in multicellular

organisms in decreasing repulsive forces that prob-

ably led to the sequestration of a cell lineage set early

in development for the production of gametes . . .The

separation of the germ line reduced the opportunity

for conflict . . . and thus was a first step toward

the evolution of individuality.’’ (Reeve and Keller

1999, p 12)

Since we are considering the bilaterian LCA, our

starting point is a multicellular animal with multiple

cell types and a division of labor, albeit of unknown

extent, among different cell populations. Bilaterian

outgroups do show a germ line/soma distinction:

although a dedicated and exclusive gametogenic cell

population may not exist (reviewed by Extavour and

Akam 2003), most of the cells of these animals are not
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capable of producing gametes. The true innovation in

the evolution of the germ line was not, therefore,

the generation of a gametogenic lineage, but rather the

loss of gametogenic potential from the majority of

cells of the organism. I do not consider here this

evolutionary innovation in detail; such explanation lies

beyond the scope of this article, and has been dealt

with extensively by several researchers (see for example

Buss 1987; Michod 1996, 1997; Michod and Roze 1997,

2001; West-Eberhard 2003). Nonetheless, it is appro-

priate to briefly review current ideas as to the evolution

of a germ cell lineage.

Even general developmental biology textbooks that

do not explicitly include evolutionary biology in

their remit, often recognize that ‘‘development from

more than one cell presents problems, as mutations

could occur in some of the cells.’’ (Wolpert et al.

2007, p 521). More explicitly, ‘‘The only way for the

genome to be fully tested is to have only one line of

germ cells.’’ (Gerhart and Kirschner 1997, p 249).

Sequestration of a dedicated germ line early in

development circumvents this problem, as the orga-

nism can thus develop from only one cell, while in

its final form be composed of millions. Early

segregation of the germ line, however, brings with

it the possibility of rapid fixation of mutations,

possibly deleterious ones, in the hereditary lineage.

Mutations arising during developmment in only

a small fraction of embryonic cells may, nonetheless

be represented in a majority of the next generation,

if the few cells in which the mutation arises happen

to be primordial germ cells (PGCs). It has indeed

been demonstrated that the developmental biology

of PGC formation, regardless of the mechanism of

PGC specification, provides an explanation for rapid

change in allelic frequencies from one generation

to the next (Drost and Lee 1998). Consistent with

these calculations are observations that PGCs in

a mosaic germline undergo natural selection at the

cellular level based on mutational differences

between them (Extavour and Garcı́a-Bellido 2001).

We must therefore reasonably expect that, in order

to effectively confer the advantage of protection

from somatic mutation, an appropriate hereditary

lineage might exhibit reduction of mitotic activity

[since more rounds of DNA replication give more

opportunity for mutation through copy error

(Sweasy et al. 2006)], reduced transcriptional activity

[because genes may be more subject to mutation

when actively transcribed (Medvedev 1981)], and

reduced mobility of transposable elements [which,

although it can be a ‘‘positive’’ force in adaptive

evolution, indisputably leads to increased mutation

rates (McDonald 1993; Fedoroff 1999; Deragon and

Capy 2000)].

In fact, the germ line displays all of these features.

Germ cells are typically mitotically quiescent from the

time of their specification during embryogenesis, until

the time that gametogenesis begins, usually during

larval or adult life (Saffman and Lasko 1999; Gilbert

and Singer 2006). They are relatively quiescent

transcriptionally during most of embryonic develop-

ment, as revealed by diagnostic histone modifications

and single-cell transcription analysis (see for example

Seydoux et al. 1996; Seydoux and Dunn 1997; Saitou

et al. 2002; Schaner et al. 2003; Deshpande et al.

2004). Finally, RNA-mediated silencing of transposable

elements has been documented in the germlines of

Caenorhabditis elegans and Drosophila melanogaster

(Sijen and Plasterk 2003; Aravin et al. 2004; Robert

et al. 2004; Vagin et al. 2006).

Several lines of evidence suggest that the granular

components of germ plasm that have been a

classical cytological marker for germ cells for over

100 years, may represent a molecular link between

three important germ cell processes: (1) post-

transcriptional silencing; (2) suppression of mobility

of transposable elements; and (3) identity of germ cells.

Ribonucleoprotein (RNP) granules called P bodies

occur in a variety of eukaryotic cell types. P bodies

have been shown to contain proteins involved

in translational repression, mRNA surveillance,

and RNA-mediated gene silencing, together with

the mRNA targets of these proteins (reviewed by

Eulalio et al. 2007). The dense granules observed in

the germ plasm of all studied metazoans (in the form

of nuage, sponge bodies, chromatoid bodies, balbiani

bodies, or mitochondrial clouds) can be considered

a germ cell-specific variant on the P body, addition-

ally containing gene products conferring germ cell

identity (see for example Kotaja and Sassone-Corsi

2007), and thus may be a key molecular hub linking

the three processes outlined above.

Firstly, PIWI and ARGONAUTE (AGO) proteins,

known to interact with the RISC (RNA-induced

silencing complex) to effect RNA-mediated gene

silencing, are also P body and germ granule

components. The miRNA pathway member Dicer

has been shown, in mice and fruit flies, to have an

important role in both post-transcriptional silencing

of germ line-specific genes and maintenance of

pluripotency (Jin and Xie 2007; Murchison et al.

2007; Park et al. 2007). Secondly, PIWI, AGO,

miRNAs and rasiRNAs not only regulate germ cell-

specific genes (Megosh et al. 2006; Mishima et al.

2006), but also suppress mobility of transposable

elements in the germline (Aravin et al. 2004;
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Vagin et al. 2006). Thirdly, products of germ line-

specific genes such as vasa and nanos are found

in germ granules, where they often engage in

positive feedback loops to regulate their own

expression and that of other germ line genes

(Mahowald 2001; Wilkins and Extavour, manuscript

in preparation).

It has further been suggested that the invention of

a gametogenic lineage, or at least a pluripotent

lineage whose responsibilities included reproduction

(see discussion by Sanchez Alvarado and Kang 2005),

was not just an added bonus, but in fact a sine qua

non of the evolution of multicellular organisms that

acted, and were acted on by natural selection, as true

individuals (Michod 1999). This is because as long

as all cells retain the possibility to contribute to

future generations, intra-individual competition

among cell lineages is predicted to prevent the

fitness gains of the group (that is, of the multicellular

organism) from exceeding the fitness gains of the

component cells. In summary, Urbilateria, as a bona

fide metazoan, can be assumed to have possessed, if

not an exclusively dedicated gametogenic population,

at least a majority of truly somatic cells, so that it

depended for its reproductive success on the

successful specification and protection throughout

development of a germ line.

Comparative data on germ cell specification

Germ cells are one of the most extensively studied

metazoan cell lineages. They represent a crucial link

between developmental biology and evolutionary

biology, being responsible for both reproduction of

the individual and genetic continuity of the species.

I propose that the most crucial aspect of germ cell

development for understanding the evolution of

the germ line is the first specification event of the

lineage, that is, the mechanism separating germ line

from soma.

Over the past two centuries, a battery of tools

for identification of germ cells and study has become

available to researchers (reviewed by Extavour and

Akam 2003). Germ cells can almost always be

unambiguously distinguished from somatic cells by

one or a combination of the following four criteria:

(1) characteristic morphology under transmitted

white light, including organelle-free cytoplasm,

high nuclear:cytoplasmic ratio, rounded nuclei

with prominent nucleoli and diffuse chromatin,

granular cytoplasmic inclusions usually localized

in the perinuclear cytoplasm associated with

nuclear pores; (2) electron-dense cytoplasmic

granules identifiable by transmission electron

microscopy (TEM); (3) high levels of alkaline

phosphatase activity (this criterion has been useful

only in mammals); (4) localization of mRNA or

protein products of germ cell-specific genes, notably

the vasa and nanos gene family products. Some

combination of these criteria always hold for germ

cells at all stages of development, from their initial

embryonic specification as PGCs, until their differ-

entiation as male and female gametes.

Identifying germ cells at some stage of develop-

ment is therefore feasible for any animal one

wishes to study, given access to embryos or adults

or both. Much more difficult, however, is discerning

the time, place, and mechanism responsible for the

initial specification that gave rise to the germ

line. This is because, as Francis Maitland Balfour

correctly noted, ‘‘Since it is usually only possible

to recognize generative elements after they have

advanced considerably in development, the mere

position of a generative cell, when first observed,

can afford . . . no absolute proof of its origin.’’

(Balfour 1885).

Specification and origin of extant metazoan

PGCs: epigenesis and preformation

In 1979 and 1981, Nieuwkoop and Sutasurya

published two excellent volumes summarizing all

literature available at that time on PGCs across the

metazoans, including, but not limited to, their initial

specification (Nieuwkoop and Sutasurya 1979, 1981).

More focused surveys dealing specifically with the

first embryological sequestration of the germ line in

both vertebrates and invertebrates are limited to

three: the first classic monographs of the past

century by Bounoure and Wolff, (Bounoure 1939;

Wolff 1964), and a modern review incorporating

the last quarter century of genetic and experimental

data that Niuewkoop and Sutasurya were not able

to include in their volumes (Extavour and

Akam 2003). The results of these studies are briefly

summarized here.

Modern developmental genetic model systems

have indicated that two basic types of molecular

mechanisms are responsible for germ cell specifica-

tion: ‘‘preformation’’ and ‘‘epigenesis’’ (Extavour and

Akam 2003). It is important to note that the two

mechanisms are not necessarily mutually exclusive,

but rather are better viewed as two extremes

of the continuum along which development of

germ cells can be mapped, since at some stage

of germ cell development, both types of mechanism

are inevitably used.
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Specification of germ cells via a cell-autonomous

mechanism was first formally proposed by Moritz

Nussbaum:

‘‘The segmented ovum divides accordingly into the

cell-material of the individual and into the cells for

the preservation of species . . .Both groups of cells and

their offspring are propagated quite independently of

each other, so that the reproductive cells have no

share in the development of the tissues of

the individual, and no seminal or ovicular cell

arises from the cell-material of the individual.’’

(from Nussbaum 1880, p 112; translated by

Stockberger 1913)

I will use the term preformation to refer to the

acquisition of germ cell fate through localized,

inherited cytoplasmic determinants, which later are

both necessary and sufficient to confer germ cell fate

upon the cell containing them. The molecules

composing these determinants are both mRNA and

protein products of genes that are widely conserved

across all metazoans. Dipterans and nematodes are

well known, long-standing examples of animals

exhibiting this mode of PGC specification

(Illmensee and Mahowald 1974, 1976; Strome and

Wood 1982; Wolf et al. 1983; Markussen et al. 1995;

Mello et al. 1996).

The idea of preformation and immortality of the

germ line greatly influenced biologists following

August Weismann’s treatise on the subject

(Weismann 1892). It has become increasingly clear,

however, that immortality of the germ line does not

hold true for all animal groups, leading many

workers to revise the way they think about the

germ line:

‘‘We must ask ourselves whether the distinction

between a separate and in principle continuous,

immortal germ line and the mortal somatic tissues of

the organism is still valid, or whether it is an

artificial distinction which has merely been retained

in the literature as a remnant of Weismann’s

Keimplasma theory.’’ (Nieuwkoop and Sutasurya

1981, p 174)

I will use the term epigenesis to refer to

acquisition of germ cell fate by reception of inductive

signals from germ layers adjacent to future PGCs. In

this case, the signals are themselves necessary and

sufficient to induce receiving cells to adopt PGC fate.

Mice and axolotls clearly exhibit this mode of PGC

specification (Nieuwkoop 1947; Tam and Zhou

1996), and while in the axolotl the inductive signals

have not yet been identified (although see Johnson

et al. 2003), in mice they are members of the

BMP2/4 and 8b families (Lawson et al. 1999;

Ying et al. 2000; Ying and Zhao 2001).

Until very recently, it was widely held among most

developmental biologists that since preformation was

prevalent among most model laboratory organisms,

it was probably the most widespread and ancestral

mechanism of PGC formation (contrast the second

edition of the influential text Wolpert et al. 2002;

with the most recent edition, Wolpert et al. 2007).

However, if we move beyond the relatively derived

species used as genetic model systems, closer

examination of the available data demonstrates that

this is unlikely to be the case (for details and

comprehensive reference lists, see Extavour and

Akam 2003).

Within protostomes, all studied members of most

phyla appear to use epigenesis to specify PGCs, while

a few phyla (Platyhelminthes, Annelida, Mollusca,

and Arthropoda) contain members showing epigen-

esis as well as members showing preformation

(Fig. 1). There are only three protostome phyla

(Nematoda, Rotifera, and Chaetognatha), all of

whose studied members exhibit preformation.

In other words, across both the Ecdysozoa and the

Lophotrochozoa, epigenesis is the more common

mechanism of PGC specification.

Within the deuterostomes, most phyla show the

same pattern as the protostomes. For all studied

members of the nonchordate phyla, epigenesis is

likely used to specify PGCs (Fig. 1). Of the

chordates, only Urochordata, Chondrichthyes and

Actinopterygii contain some members that use

epigenesis et al. that use preformation as a PGC

specification mode. Finally, in only two clades

(anuran amphibians and archosaurs) do all studied

members exhibit evidence for preformation. To

summarize, with the exception of some elasmo-

branchs, the only deuterostome clades containing

preformistic members are those containing all model

laboratory chordates except for mice. These are (1)

the solitary ascidians Ciona intestinalis and

Halocynthia roretzi (Nishikata et al. 1999; Takamura

et al. 2002; Shirae-Kurabayashi et al. 2006) [but note

that recent data on colonial ascidians (Sunanaga

et al. 2006, 2007) is consistent with epigenesis];

(2) the frog Xenopus laevis (Heasman et al. 1984;

Wylie et al. 1985; Ikenishi et al. 1986); (3) the teleost

Danio rerio (Olsen et al. 1997; Yoon et al. 1997), and

(4) the chicken Gallus gallus (Tsunekawa et al. 2000;

Naito et al. 2001). All other studied deuterostomes,

including the Ambulacraria and Xenoturbellida,

show evidence for epigenesis as the mode of PGC

specification.
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Fig. 1 Distribution of PGC specification mechanisms across the Metazoa. Position of ‘‘Urbilateria’’ indicated by shaded oval.

Epigenesis (black boxes), preformation (white boxes), or both mechanisms (black and white boxes) are indicated only for phyla for

which at least two independent primary data sources provide morphological, cell lineage, experimental, or molecular evidence.

Details of source data are as described by Extavour and Akam (2003). Adapted from Extavour and Akam (2003) with modifications

as follows: assignation of Xenoturbella to its own phylum within the deuterostomes (Bourlat et al. 2003, 2006); evidence for epigenetic

PGC specification in a colonial ascidian (Sunanaga et al. 2006, 2007); changed phylogenetic relationship of Urochordata and

Cephalochordata within the Chordata (Bourlat et al. 2006; Delsuc et al. 2006; Vienne and Pontarotti 2006) and affiliation

of Chaetognatha with the protostomes (Marletaz et al. 2006; Matus et al. 2006).
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A stem cell origin of Urbilaterian PGCs

The data summarized above, taken together with the

observation that there are no data supporting

preformation of the germ line in any of the bilaterian

outgroups (Extavour and Akam 2003) (Fig. 1),

strongly suggest that epigenetic establishment of

the germ line was present in Urbilateria. However,

even if it is likely that inductive signals were used to

establish urbilaterian germ cells, we are still left

with the problem of understanding the evolutionary

origin of the germ line. Just as the evolution of

mesoderm needs to be considered, in order to

understand the transition from diploblasty to triplo-

blasty (Technau and Scholz 2003; Martindale et al.

2004), the evolution of the germ line as a separate

cell type needs to be considered, in order to

understand the evolution of a ‘‘true soma,’’ devoid

of reproductive capability, and the division of labor

that accompanied the evolution of multicellularity.

It is therefore useful to consider how bilaterian

outgroups generate a germ line.

Sponges, cnidarians, and acoel flatworms use

very similar strategies to obtain gametogenic cells.

They all contain a population of endodermally

derived pluripotent stem cells (sponge archaeocytes,

cnidarian interstitial cells, and acoel neoblasts) that

acquire their fate in early to mid-embryogenesis,

and can give rise to both somatic cell types and

gametes (reviewed by Agata et al. 2006). These cells

are scattered throughout the body cavity and/or

intercalated between other somatic cells. Urbilateria

was unlikely to have had all of its gametogenic cells

clustered together in one region, but rather might

have had them scattered throughout the body

(Extavour 2007). These potential PGCs would have

been pluripotent stem cells: some of them would

have been capable of creating or regenerating adult

somatic tissue as well, throughout the lifetime of

the animal. The closest extant cell population to

the urbilaterian germ line may be similar to the

archaeocytes of sponges, which share both the

characteristics listed above and some gene expression

with the germ cells of triploblasts (Perovic-Ottstadt

et al. 2004; Muller 2006).

As well as using the general pattern of metazoan

germ cell specification modes to infer that

Urbilateria’s germ cells were a subpopulation of

stem cells, we can also obtain evidence from modern

molecular and functional comparisons between stem

cells and germ cells. The electron dense granules

inevitably found in germ cells using transmission

electron microscopy (TEM), have also been found in

stem cell lineages (Eddy 1975). Pluripotent cells often

display all the morphological features commonly

used to identify germ cells, such as a large round

nucleus with diffuse chromatin and a prominent

nucleolus. This can lead to an inability to distinguish

between germ cells and other types of stem cells (see

for example Potswald 1969, 1972). Similarly, when

using molecular markers to identify germ cells,

unless careful phylogenetic analysis of the gene

homologues is carried out, researchers run the risk

of isolating genes that will not distinguish between

germ cells and other pluripotent cells. For example,

the products of vasa gene family members are nearly

always exclusive to the germ cell lineage (Raz 2000;

Extavour and Akam 2003). The vasa gene family is

thought to have evolved from the PL10 family of

helicases, which share significant structural similarity

with vasa genes (Mochizuki et al. 2001). PL10

products are usually localized both in germ cells

and in other pluripotent cell types. If PL10 homo-

logues are isolated and incorrectly assigned vasa

homology due to insufficient analysis, using them to

identify germ cells can give rise to ambiguous or

inaccurate lineage assignation (see for example

Shibata et al. 1999). The vasa expression in

combination with the expression of other germ line

genes, however, can allow distinction between germ

line cells and somatic cells, even in animals with

large populations of pluripotent stem cells (see Sato

et al. 2006 and references therein).

Genes used by both germ cells and other stem cell

types are not limited to vasa family members.

Much recent work has been dedicated to elucidating

both shared elements and distinguishing features of

the specific gene regulatory networks of the germ line

and other types of stem cells (see Table 1 for a guide

to the nomenclature of stem cell types). Several

nongermline stem cell types display large groups of

highly expressed genes, which may underlie their

individual identities (Ivanova et al. 2002; Ramalho-

Santos et al. 2002; Fortunel et al. 2003; Sun et al.

2007). The appealing idea of molecular genetic

‘‘stemness,’’ or a common genetic regulatory logic

shared by all stem cell types, is consistent with the

observed plasticity of stem cells (Filip et al. 2004)

and potentially useful as a systems-property

concept (Robert et al. 2006). However, it is largely

unsupported by comparison of gene-expression

profiles of different stem cells, both within and

between species (Burns and Zon 2002; Evsikov and

Solter 2003; Fortunel et al. 2003; Sun et al. 2007).

Nonetheless, clear transcriptional profile differences

are apparent between germ line stem cells (GLSCs)

and embryonic (ES) cells (Fujino et al. 2006).

Moreover, at both the transcriptome and proteome
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Table 1 Commonly used nomenclature relevant to metazoan stem cell types

Acronym Full name Animal group found Naturally occurring Derivation Differentiation Potential References

– Neoblast Planarians Yes Embryo Soma/Gametes (Shibata et al. 1999; Sanchez Alvarado

and Kang 2005; Sato et al. 2006)

– Archaeocyte Sponges Yes Embryo Soma/Gametes (Pilato 2000; Muller 2006)

– Interstitial cell Cnidarians Yes Embryo Soma/Gametes (Littlefield 1985, 1991; Littlefield and Bode 1986;

Bode 1996; Pilato 2000;

Muller et al. 2004)

– Coelomic stem cells Colonial ascidians Yes Embryo Soma/Gametes (Sunanaga et al. 2006, 2007)

(similar to

GS)

Oocyte D. melanogaster Yes GLSC GLSC/Gametes (Kai and Spradling 2004)

AE Amniotic epithelial

cells

Mammals Yes Embryonic

epiblast

Soma (Miki et al. 2005;

Miki and Strom 2006)

AFS/AFMSC Amniotic fluid

derived stem cells

Mammals Yes Adult amniotic

fluid

Soma (Tsai et al. 2006;

De Coppi et al. 2007)

EC Embryonal

carcinoma cell

Mammals Yes Teratocarcinoma Soma/Gametes (Kleinsmith and Pierce 1964;

Stevens 1967; Kahan and Ephrussi 1970;

Stewart and Mintz 1981)

EG Embryonic

germ cell

Mammals No Embryonic

PGCs

Soma/Gametes (Matsui et al. 1992; Resnick et al. 1992;

Rohwedel et al. 1996; Shamblott et al. 1998)

ES Embryonic

Stem Cell

Mammals No Embryo: ICM Soma/Gametes (Hubner et al. 2003; Aflatoonian and Moore 2006;

Niwa 2007)

GLSC/GSC Germ line

stem cell

Mammals, D. melanogaster, C. elegans Yes Embryo: PGCs Gametes (Kimble and White 1981; McLaren 2000;

Johnson et al. 2004; Wong et al. 2005;

Kirilly and Xie 2007)

GS Germ line

stem cell

Mammals No Neonatal

male testis

Soma/GLSC/Gametes (Kanatsu-Shinohara et al. 2003, 2004)

HSC Hematopoietic

stem cell

Mammals Yes Embryonic

mesoderm

Soma (Cumano and Godin 2007)

HUBCSC Umbilical cord

derived stem

cells

Mammals Yes Umbilical

cord/amnion/placenta

Soma (Nakahata et al. 1985; Weiss and Troyer 2006)

ICM Inner cell mass Mammals Yes Mammalian

blastocyst

Soma/Gametes (Gardner 1985; Yamanaka et al. 2006)

MaGS Multipotent

adult germ line

stem cell

Mammals No Adult

male testis

Soma/GLSC/Gametes (Guan et al. 2006)

(continued)
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levels, all studied nongerm line stem cell types are

more similar to each other, than they are to GLSCs

or to PGC-derived stem cells (Sperger et al. 2003;

Kurosaki et al. 2007). In summary, based on

morphological data and on gene expression, germ

cells and somatic stem cells are similar enough to

suggest a shared evolutionary origin, but different

enough to argue that germ cells arose as a lineage-

restricted population of somatic stem cells, as a

result of changes in gene regulation specific to the

germ line at transcriptional, and possibly also post-

transcriptional, levels (see also Agata et al. 2006).

A further level of similarity between germ cells

and stem cells has been revealed by functional

analysis in both vertebrate and invertebrate systems.

Mammalian embryonic germ cells or male GLSCs

grown in culture can be induced to become

pluripotent stem cells, called embryonic germ (EG)

cells or germ line stem (GS) cells respectively, that

are very similar in differentiation potential to ES cells

derived from the inner cell mass (ICM) of the

blastocyst (Matsui et al. 1992; Resnick et al. 1992;

Rohwedel et al. 1996; Shamblott et al. 1998; Kanatsu-

Shinohara et al. 2003, 2004; Guan et al. 2006).

Drosophila germ cells already en route towards

oogenic differentiation can be induced to revert to

a germ line stem cell state (Kai and Spradling 2004).

Finally, in what is, in a sense, the wild-type converse

of the Drosophila experimental result, recent evidence

suggests that germ line cells can be derived from

preexisting somatic stem cell populations, through

de novo gene expression of a germ line-specific gene,

in planarians (Sato et al. 2006) and colonial ascidians

(Sunanaga et al. 2007).

Similar dedifferentiation and redifferentiation is

seen in cells from teratocarcinomas. These are

malignant tumours probably formed from ectopic

or aberrant primordial germ cells, which contain

multiple differentiated tissues as well as undiffer-

entiated stem cells called embryonal carcinoma (EC)

cells (Stevens 1967). Cultures of EC cells, used as

in vitro models of mammalian differentiation and

development, have demonstrated that PGCs may

be able, after ‘‘dedifferentiation’’ into EC cells,

to ‘‘redifferentiate’’ as multiple somatic cell types

(Kleinsmith and Pierce 1964; Kahan and Ephrussi

1970). Even more strikingly, when transplanted

into blastocysts, which are then implanted into

host female uteri, mouse teratocarinoma cells can

contribute (albeit at low frequencies) not only

to many somatic tissues, but also to the germ line,

of the resulting progeny (Mintz and Illmensee 1975;

Stewart and Mintz 1981, 1982).T
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Because ES cells are usually derived from

blastocyst ICM cells, they are generally assumed to

be equivalent to ICM cells. Observed differences

between ES cells and ICM cells might simply be the

result of ES culture conditions. Zwaka and Thomson

(2005), however, have hypothesized that EG, ES,

and EC cells may all have their closest in vivo

equivalent not in ICM cells, but rather in germ cells.

This hypothesis may explain the developmental

origins of ES cells, but to explain the evolutionary

origins of germ cells, we need to invert the

hypothesis. I propose that PGCs may have their

closest evolutionary equivalent in the pluripotent

stem cells that are found in extant nonBilateria

and basal bilaterians, which almost certainly existed

in Urbilateria.

Convergent evolution of preformation

If epigenesis was used by Urbilateria to specify

the germ line, then preformation must have evolved

convergently several times during the bilaterian

radiation. We therefore require a feasible framework

for conceiving the following: Urbilaterian germ cells

were a subpopulation of somatic cells, and repeat-

edly, in several descendant lineages of Urbilateria,

germ cells acquired a cell-autonomous specification

mechanism, and became a lineage independent of

somatic cells. To demonstrate how this proposal

represents a modification of previous models of germ

line continuity, I compare it with the three major

previous models: (1) pangenesis; (2) continuity; and

(3) modified continuity with somatic selection.

Darwin’s (1859) pangenesis theory provided a

biological explanation for Lamarck’s (1809) ideas

about inheritance of acquired characteristics: all

somatic cells produced particles, called gemmules,

which traveled through the body and lodged in the

germ cells. Since germ cells did not initially contain

all of the information necessary to reproduce the

adult form in successive generations, including

acquired characteristics, they needed to receive this

information from the gemmules. The germ line was

neither immortal nor continuous, as it produced

only the soma of the next generation, and that soma

would produce the next germ line (Fig. 2A).

Weismann, on the other hand, was sure that germ

cells were autonomously totipotent from the

moment of their formation, and that their nuclear

information was both impervious to somatic

influence and sufficient for reproduction of the

adult form (Weismann 1892). In other words,

the germ line was both immortal and continuous,

and the source of both soma and germ line

of subsequent generations (Fig. 2B). Since at least

Fig. 2 Models for the evolution of the relationship between germ line and soma. (A) Pangenesis: the soma (white) informs and

specifies the germ line (black), which in turn gives rise only to the soma. (B) Immortality/Continuity: the germ line is the sole

progenitor of both germ line and soma, receiving no somatic input. (C) Continuity allowing for somatic selection: somatic mutation

(gradient) may allow specification of germ line (grey) from somatic cells (top series), representing a deviation (large arrow) from the

usual continuity of the germ line (bottom series). (D) Evolution of preformation from epigenesis: germ line mutation (grey) may confer

continuity on the germ line (top series), representing a deviation (large arrow) from the usual somatic origin for stem cells (bottom

series).
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the 1920s, however, it has become increasingly clear

that Weismann’s hypothesis is in need of serious

revision, given the existence of epigenesis in germ

line specification in many species (Hargitt 1919;

Heys 1931; Berrill and Liu 1948). Leo Buss (1983)

has proposed an elegant revision of Weismann’s

hypothesis that takes into account both epigenetic

germ line origin and intra-individual cellular

selection. In this model, while germ line continuity

may exist in some species (Fig. 2C, bottom

series), somatic mutation may sometimes allow

a subpopulation of the soma to produce gametes

(Fig. 2C, top series).

To explain repeated evolution of preformation

from epigenesis, it suffices to invert Buss’ model

(Fig. 2D). Urbilateria would have segregated germ

cells epigenetically, as a subpopulation of somatic

cells; soma therefore gave rise to both germ line and

soma (Fig. 2D, bottom series). Where Buss’ model

suggests that mutations affecting the soma could

allow somatic cells to produce gametes, I suggest that

mutations affecting the germ line could allow

autonomous segregation of germ cells in a subse-

quent generation (Fig. 2D, top series). This mecha-

nism of preformation would then be inherited in

subsequent generations. In order to understand

what kind of germ line mutation could have had

this effect, in the next section we consider known

examples of germ cells that are specified by

preformation.

Evolving preformation from epigenesis:

a transitional model

All known molecular mechanisms of preformation

rely on localization of germ cell-specific molecules

(germ plasm components) to a particular place in

the oocyte, either before or after fertilization (see for

example Illmensee et al. 1976; Ressom and Dixon

1988; Carré et al. 2002). In several cases, the genes

encoding these molecules, and their germ line

expression, are conserved across all bilaterian species

for which data are available (Extavour and Akam

2003). Many germ plasm components are expressed

and required not only in primordial germ cells,

but also during gametogenesis (see for example

Styhler et al. 1998; Tanaka et al. 2000; Extavour et al.

2005). The major difference between epigenesis

and preformation is thus the relative time of gene

expression and gene product localization of germ

cell-specific genes: in epigenesis, these genes are

downregulated and/or their products are eliminated

from the oocyte, after gametogenesis. Their products

are not present in the cytoplasm of the fertilized egg

and cannot therefore be autonomously inherited

by PGCs; instead the genes must be zygotically

activated in PGCs through epigenetic signaling

(Fig. 3A). In preformation, germ cell-specific gene

products persist through the completion of oogenesis

in the zygotic cytoplasm, and are therefore available

for inclusion into PGCs before the initiation of

zygotic transcription (Fig. 3B). The molecular genetic

Fig. 3 A transitional model for the evolution of preformation from epigensis. (A) Epigenesis: germ cell-specific molecules expressed

during gametogenesis are not present in oocytes at the time of fertilization. During embryogenesis, inductive signals (black) specify

PGCs, which begin zygotic expression of germ cell-specific molecules (dark grey). Germ cells produce gametes to complete the cycle.

(B) Preformation: maternal germ cell determinants (light grey) are localized to oocyte cytoplasm and inherited cell-autonomously by

PGCs forming in early cleavage stages. Germ cells are localized to gonads during morphogenesis and produce gametes to complete the

cycle. (C) Transition from epigenesis to preformation: germ cell-specific molecules expressed during gametogenesis are retained in the

oocytes until fertilization. They are localized in the oocyte cytoplasm, and inherited cell-autonomously by PGCs forming in early

cleavage stages. Inductive signals (black) produced during embryogenesis are now redundant with respect to PGC formation, although

they may still be operative. Germ cells are localized to gonads during morphogenesis and produce gametes to complete the cycle.

Loss of inductive signals is predicted over evolutionary time, so that this system comes to be like that shown in (B).
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interactions that may account for the evolution of

persistent germ plasm will be discussed elsewhere

(Wilkins and Extavour, manuscript in preparation).

Even without invoking the involvement of specific

gene products, however, it is clear that in order to

make the transition from epigenesis to preformation,

only three things are necessary: (1) persistence of

germ cell-specific gene products through the end of

gametogenesis; (2) cytoplasmic localization of these

germ cell-specific gene products within the oocyte;

and (3) inheritance of these products, which would

now constitute germ plasm components, by future

PGCs (Fig. 3C).

Mutations arising in the germ line that affected

the cytokskeletal dynamics of oocytes, translational

mRNA regulation, or protein localization of

germ cell molecules could allow persistence and

localization of these molecules in mature oocytes.

Once preformation had arisen in a heritable way

through such mutation(s), signals from somatic

tissues that induce germ line fate would no longer

be necessary to ensure survival of a species.

We would therefore expect gradual loss of these

signaling mechanisms, since ‘‘unnecessary but costly

structures or activities should be lost in evolution.’’

(Michod 1999, p 55). This model is consistent

with our observation of repeated evolution of

autonomous germ line determinants in several

groups (Fig. 1), and with the complete absence of

examples of epigenesis in phyla in which preforma-

tion is plesiomorphic (e.g., Rotifera, Chaetognatha,

Nematoda).

This model predicts the existence at some time of

species in which both preformation and epigenesis

were operative, or at least operable. In all preformis-

tic model organisms, however, when PGCs or their

precursors are eliminated through physical ablation

or genetic manipulation, the resulting animals are

sterile, presumably because they are unable to replace

the ablated germ line through epigenetic mechanisms

(reviewed by Saffman and Lasko 1999). These

animals may belong to lineages in which preforma-

tion evolved so long ago that their epigenetic

signaling mechanisms have become unusable through

lack of positive selection. This explanation is not

unreasonable, given that all currently used genetic

model organisms are derived with respect to many

other aspects of embryogenesis. Alternatively, our

failure thus far to observe widespread coexistence of

both PGC specification mechanisms may simply

be reflective of inadequate sampling of taxa.

Intriguingly, in the solitary ascidian C. intestinalis,

although convincing embryological and molecular

genetic data suggest that preformation specifies

PGCs (Iseto and Nishida 1999; Takamura et al.

2002; Nakamura et al. 2003; Shirae-Kurabayashi

et al. 2006), when the PGCs are ablated in larval

stages, the resulting adults are still fertile (Takamura

et al. 2002). Similarly, although mitotic dynamics

and patterns of gene expression suggest an early

germ line segregation event in sea urchins (Pehrson

and Cohen 1986; Juliano et al. 2006), regulative

replacement of germ cells has been shown to occur

if the early lineage is experimentally ablated

(Ransick et al. 1996). The mechanism(s) responsible

for such replacement of the germ line is currently

unknown. I suggest that as more species from

the diversity of the Bilateria become amenable to

molecular analysis of embryogenesis and develop-

ment, further examples of species able to use both

epigenetic and preformation to specify germ cells will

emerge.

Conclusions

Urbilaterian germ cells were likely specified as

a subpopulation of preexisting somatic pluripotent

stem cells, through inductive signals of unknown

molecular identity. Changes in the timing of

expression (heterochrony) and of ooplasmic localiza-

tion (heterotopy/heterotypy) of germ cell differentia-

tion genes led to early embryonic cytoplasmic

inheritance of germ cell determinants that was both

heritable and independent of somatic epigenetic

signaling later in embryonic development, resulting

in convergent evolution of preformation. In descen-

dant lineages that had evolved preformation,

epigenetic mechanisms of germ cell specification

would have gradually deteriorated due to lack of

positive selection.
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