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ABSTRACT

Studies in vertebrate and invertebrate model organisms on the molecular basis of primordial germ cell
(PGC) specification have revealed that metazoans can specify their germ line either early in development
by maternally transmitted cytoplasmic factors (inheritance), or later in development by signaling factors
from neighboring tissues (induction). Regardless of the mode of PGC specification, once animal germ
cells are specified, they invariably express a number of highly conserved genes. These include vasa and
piwi, which can play essential roles in any or all of PGC specification, development, or gametogenesis.
Although the arthropods are the most speciose animal phylum, to date there have been no functional
studies of conserved germ line genes in species of the most basally branching arthropod clade, the
chelicerates (which includes spiders, scorpions, and horseshoe crabs). Here we present the first such
study by using molecular and functional tools to examine germ line development and the roles of vasa
and piwi orthologues in the common house spider Parasteatoda (formerly Achaearanea) tepidariorum. We
use transcript and protein expression patterns of Pt-vasa and Pt-piwi to show that primordial germ cells
(PGCs) in the spider arise during late embryogenesis. Neither Pt-vasa nor Pt-piwi gene products are
localized asymmetrically to any embryonic region before PGCs emerge as paired segmental clusters in
opisthosomal segments 2-6 at late germ band stages. RNA interference studies reveal that both genes
are required maternally for egg laying, mitotic progression in early embryos, and embryonic survival. Our
results add to the growing body of evidence that vasa and piwi can play important roles in somatic
development, and provide evidence for a previously hypothesized conserved role for vasa in cell cycle
progression.

© 2014 Elsevier Inc. All rights reserved.

Introduction

expressed in multipotent stem cells of many organisms (reviewed
by Juliano et al., 2010; Yajima and Wessel, 2011b) and in differ-

Two genes that are expressed in germ cells of all metazoans are
piwi and vasa (Ewen-Campen et al., 2010). In animals that specify
their germ cells via maternally inherited germ plasm, these genes
and their products are indispensible germ plasm components and
play multiple roles in germ cell specification and maintenance
(Lin and Spradling, 1997; Megosh et al., 2006; Schiipbach and
Wieschaus, 1986; Spike et al., 2008).

In addition to their function as germ line markers and their
roles in germ cell specification, development and function, vasa
and piwi have also been implicated in a variety of other functions
outside the germ line. vasa, which encodes a DEAD-box RNA
helicase with a role in translational regulation (Raz, 2000), is also
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entiated somatic cell types, including sensory organs (Alié et al.,
2010) and somatic gonad cells (Maurizii et al., 2009). piwi, which
encodes a PAZ domain-containing member of the Argonaute
family (Lin and Spradling, 1997), has been found to be expressed
in such varied animal somatic cell types as somatic stem cells (De
Mulder et al., 2009; Palakodeti et al., 2008; Reddien et al., 2005;
Sharma et al., 2001), sponge archaeocytes (Funayama et al., 2010),
and cells in the nervous system (Giani et al., 2011; Lu et al., 2011).

At the level of molecular mechanisms, piwi is known to play roles
in small RNA-mediated transposon silencing and epigenetic regulation
of gene expression via chromatin state modification (Brower-Toland
et al, 2007; Yin and Lin, 2007). In addition, both vasa and piwi are
required for meiotic germ line divisions (Bao et al., 2014; Carmell et al.,
2007; Houwing et al, 2008; Fabioux et al, 2009; Ghabrial and
Schiipbach, 1999; Medrano et al., 2012), and mitotic germ line stem
cell divisions in Drosophila (Cox et al, 2000; Pek and Kai, 2011).
Recently a new, important somatic function of both vasa and piwi
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has been uncovered: both genes are also involved in mitotic cell
divisions. For vasa, this role has been shown during early blastomere
divisions in sea urchin embryos (Yajima and Wessel, 2011a), and for
piwi, maternally provided Piwi protein is required for cell cycle
progression by maintaining chromatin organization in early Drosophila
embryos (Mani et al., 2014).

Whether these roles of vasa and piwi in mitotic cell cycle
progression are conserved in other metazoans is currently
unknown. Specifically in the most speciose metazoan phylum,
the arthropods, vasa and piwi are expressed in germ cells
of multiple insects (Dearden, 2006; Donnell et al., 2004; Khila
and Abouheif, 2008; Lin and Chang, 2009; Lynch and Desplan,
2010; Mito et al., 2008; Nakao et al., 2006; Rezende-Teixeira et al.,
2009; Schroder, 2006; Tanaka and Hartfelder, 2009; Zhurov et al.,
2004), crustaceans (Aflalo et al., 2007; Extavour, 2005; Ozhan-Kizil
et al., 2009; Sagawa et al., 2005; Sellars et al.,, 2007), and a
centipede (Green and Akam, 2014). In the highly derived dipteran
model system Drosophila melanogaster, both genes are required for
germ cell formation (Lasko and Ashburner, 1990; Megosh et al.,
2006). However, outside of D. melanogaster, the functions of vasa
and piwi have only been examined experimentally in two basally
branching insects and one crustacean. In the cricket Gryllus
bimaculatus, neither vasa nor piwi are required for embryonic
germ line formation, but both genes show an involvement in adult
spermatogenesis (Ewen-Campen et al., 2013a). The same is also
true for vasa in the milkweed bug Oncopeltus fasciatus (Ewen-
Campen et al, 2013b). In the amphipod crustacean Parhyale
hawaiensis, which specifies PGCs using germ plasm (Extavour,
2005; Gupta and Extavour, 2013), vasa is required for PGC migra-
tion and survival, but not for their specification (Ozhan-Kizil et al.,
2009). Germ cells have been identified using vasa and piwi as
molecular markers in the centipede Strigamia maritima, where the
ubiquitous expression of these genes during oogenesis and early
embryogenesis could mean that centipede PGCs are specified by
zygotic mechanisms rather than by germ plasm (Green and Akam,
2014). However, functional data on the roles of these genes in the
most basally branching arthropod clades, Myriapoda and Chelicer-
ata, is lacking entirely.

To elucidate the role that vasa and piwi have in a basally
branching arthropod, here we study the expression and function
of these genes in an emerging chelicerate model system, the
common house spider Parasteatoda tepidariorum (formerly classi-
fied as Achaearanea tepidariorum). Chelicerates (spiders, scorpions,
mites and horseshoe crabs), particularly spiders, have been the
focus of embryological research for more than 150 years (see for
example Herold, 1824; Wittich, 1845). However, descriptions of
germ cells and their specification in chelicerate embryos are still
scarce. All of the existing records describe an origin of germ cells
after formation of the cellular embryonic rudiment, suggesting
that germ cells may be specified by induction (Aeschlimann, 1958;
Dearden et al., 2003; Faussek, 1889, 1891; Heymons, 1904;
Kautzsch, 1910; Montgomery, 1909; Strand, 1906).

In this first study of spider germ line development using
molecular tools, we show that while both piwi and vasa are
molecular markers of PGCs, neither transcripts nor protein products
of the two germ line marker genes are expressed asymmetrically in
oocytes or early embryos. Instead, they first localize to specific
cells late in embryogenesis in paired clusters of cells in opisthoso-
mal segments 02-06, suggesting that germ cell specification in
the spider may not be germ plasm based, and could require an
inductive specification mechanism. Finally, we demonstrate
that vasa and piwi are required maternally for egg laying
and embryonic survival past gastrulation. We provide evidence that
the latter requirement is due to a role of both genes in mitotic
integrity, consistent with a conserved role in this process across
animals.

Materials and methods
Animal culture

Animals and embryos were obtained from a laboratory culture
founded with spiders collected near Cologne, Germany and pur-
chased from Spider Pharm (Yarnell, AZ, USA).

Cloning and phylogenetic analysis of Pt-vasa and Pt-piwi

RNA was extracted from embryos using Trizol (Life Technologies).
A 430 bp Pt-vasa fragment (Fig. S1A) was cloned from first strand
cDNA using Superscript IlI Supermix (Life Technologies), with primers
Pt-vas fwl GAYYTNATGGCNTGYGCNCA and Pt-vas revl TNGCNS-
WRAACATNARNGTYTG, and extended by RACE PCR using the SMART
RACE kit (Clontech) and primers Pt-vas 5RACE CGTCCCGGTGTG-
GCAGCGAGAAGATGAC, Pt-vas 3'RACE1 CCCTGGGCTGTCATAGTTG-
CACCTACTC and Pt-vas 3'RACE2 CTTCTCGCTGCCACACCGGGACGGCTT.
A contig with orthology to Piwi (Fig. S1B) was found in a Parasteatoda
developmental transcriptome (Posnien et al., 2014) and confirmed
using primers Pt-piwi fw GCTCCAAATCATCCTGAACTT and Pt-piwi rev
GCAAAGTTCAGAGATAAAACAGTTT. Both sequences were submitted to
GenBank with accession numbers HF677118-9.

Alignments for phylogenetic analysis were produced and
trimmed on phylogeny.fr (Dereeper et al., 2008) using Muscle
(Edgar, 2004) and GBlocks with the least stringent settings
(Talavera and Castresana, 2007). Maximum likelihood analysis
was carried out using RAXML 7.2.8 (Stamatakis, 2006; Stamatakis
et al., 2008) on the Odyssey Cluster (FAS Research Compu-
ting, Harvard University) (Fig. S1). Accession numbers of proteins
used for phylogenetic analysis are: Apis mellifera Vasa ABC41341.1
and Belle XP_391829.3, Gryllus bimaculatus Vasa BAG65665.1,
Daphnia magna Vasa BAEO00180.1, Artemia franciscana Vasa
BAD99523.1, Tribolium castaneum Vasa NP_001034520.2, Belle
EFA04596.1, Agol XP_971295.2, Ago2a NP_001107842.1, Ago2b
NP_001107828.1, Aub XP_001811159.1 and Piwi XP_968053.
2, D. melanogaster Vasa NP_723899.1, Belle NP_536783.1, Ago3
NP_001036627.2, Agol NP_725341.1, Ago3 NP_730054.1, Aub
NP_4767341 and Piwi NP_476875.1, Mus musculus Vasa
NP_001139357.1, PL10 NP_149068.1, MILI NP_067283.1, MIWI
NP_067286.1 and MIWI2 NP_808573.2, Danio rerio Vasa
AAI29276.1, PL10 NP_571016.2, ZIWI NP_899181.1 and ZILI
NP_001073668.2, Platynereis dumerilii Vasa CAJ15139.1 and PL10
CAJ15140.1, Crassostrea gigas Vasa AAR37337.1, Crepidula fornicata
Vasa ADI48178.1, Nasonia vitripennis Vasa XP_001603956.1 and
Belle XP_001605842.1, Xenopus laevis VLG-1 AAI69679.1 and
PL10 NP_001080283.1. The rapid bootstrapping algorithm was
used to simultaneously estimate the best tree and bootstrap
values from 2000 independent runs under the WAG model
of protein evolution and with a gamma distribution of rate
heterogeneity.

Whole mount in situ hybridization and semi-thin sections

Embryos of Parasteatoda were fixed (Akiyama-Oda and Oda,
2003) as previously described. Ovaries were dissected from adult
or juvenile female spiders in PBS and fixed for 30 min in 4%
formaldehyde in 1 x PBS. In situ hybridizations were performed as
described in Prpic et al. (2008b). In situ hybridizations on control
and experimental (RNAi) embryos were developed for the same
amount of time. Embryos were sectioned as previously described
(McGregor et al., 2008).
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Antibody generation

To create an «-Pt-Vasa antibody, a 17 amino acid N-terminal
peptide of Pt-Vasa (H2N-EYAGEGHMSRDCTESGG-COOH) was used
to immunize two rabbits. Rabbits received four boosts over a
period of 102 days. Peptide design and immunizations were
performed by Open BioSystems, Inc. (Huntsville, AL, USA). Western
blots were carried out as previously described (Ewen-Campen
et al, 2012) to test reactivity of the antisera to a spider ovary
protein extract. One of the sera proved non-specific («—Pt-Vasa
2298; not shown), and the second serum (o —Pt-Vasa 2297) used
at a concentration of 1:500 labeled a protein of approximately
80 kDa, which is within the size range for the Pt-Vasa protein,
predicted by comparison to other arthropod Vasa proteins
(Fig. S2A). Pre-immune sera showed no specific signal in control
immunostainings (not shown).

To create an a-Pt-Piwi antibody, a fragment coding for the
C-terminal 665 amino acids of Pt-Piwi was cloned into TOPO
pET151. The recombinant protein was expressed in Escherichia coli,
purified by electroelution from an acrylamide gel and used to
immunize two rabbits three times within 80 days. Sera from both
rabbits were tested by Western blotting, used at a concentration of
1:1000, against the purified protein and a protein extract from
adult spider ovaries (Fig. S2B). In the purified protein samples,
both sera (a—Pt-Piwi 159 and a—Pt-Piwi 160) detected a major
band at close to the predicted molecular weight of Pt-Piwi
(101.5 kDa), with minor signal slightly below and at ~25 kDa.
In ovarian protein extracts, serum o—Pt-Piwi 159 detected two
bands of ~80 and 90 kDa, and serum o—Pt-Piwi 160 detected
three bands of ~70, 80 and 90 kDa (Fig. S2B). This suggests either
that our predictions of the Pt-Piwi protein size, which rely on a de
novo spider transcriptome assembly (Posnien et al., 2014), are
overestimates, or that the sera may detect other Piwi-family
proteins in spider ovary total protein extracts. All immunohisto-
chemistry experiments yielded similar results for both sera, and
no specific signal was visible in either pre-immune serum controls
or secondary-only controls (not shown). Serum o—Pt-Piwi 159
was used for all experiments hereafter. Protein expression, pur-
ification, immunization and Western blotting for o-Pt-Piwi were
performed by the Cell Imaging and Analysis Network (CIAN)
Proteomics Facility at McGill University (Montréal, Canada).

Immunohistochemistry

Embryos were fixed with the same buffers used for in situ
fixation for 1-2 h, stored in 100% ethanol, and stained following
standard protocols. Primary antibodies were rabbit a-Pt-Vasa (pre-
absorbed at 1:100 for three hours at room temperature with a
mixture of dissected heads of Parasteatoda stage 14 embryos and
D. melanogaster mixed stage embryos) 1:2000; rabbit o-Pt-Piwi
1:300; mouse anti-o-Tubulin DM1a (Sigma) 1:50; mouse o-f-
Tubulin E7 (Developmental Studies Hybridoma Bank) 1:10; and
rabbit o — cleaved caspase 3 (Cell Signaling 9661) 1:200. Secondary
antibodies were goat a-mouse Alexa Fluor 488, goat a-rabbit Alexa
Fluor 555, and goat a-rabbit Alexa Fluor 568 (Invitrogen) 1:500.

For Pt-Vasa signal quantification in Pt-vasa pRNAi oocytes, all
tissue was fixed and stained under the same conditions 18 days
after the first injection, and imaging was performed using the
same confocal microscope settings for controls and experimental
oocytes. Oocyte area was measured with Zen 2011 (Zeiss) using
the spline tool on the widest Z-section of the oocyte. Only oocytes
of similar size ranges were chosen for the analysis (1600-
10900 pm?). Subsequently the average fluorescence intensity in
the Pt-Vasa channel, as measured by the spline tool, was recorded
for the brightest Z-section of each oocyte.

Parental RNAi

Parental RNAi (pRNAi) was performed as previously described
(Akiyama-Oda and Oda, 2006). Ten adult female spiders were injected
with a 719 bp 5’ (nt 34-752) fragment of Pt-vasa dsRNA and five adult
female spiders with a non-overlapping 745bp 3’ (nt 853-1597)
Pt-vasa fragment. One spider was injected with a 5 fragment of
Pt-piwi, and four spiders were injected with a non-overlapping
3’ fragment of Pt-piwi dsRNA. Both 5" and 3’ fragments of both genes
yielded similar phenotypic results (Tables S1 and S2) and data were
pooled for analysis. Seven adult female spiders injected with dsRNA
against exogenous DsRed served as a control. All spiders were injected
two to three times every two to three days for a total of six injections,
and mated one to three days after the first injection. Each egg sac was
opened one day after being deposited to recover eggs, which were
photographed and counted using Adobe Photoshop CS5. Embryos
were fixed for gene expression and phenotypic analysis one and four
days after egg deposition. Fixed embryos were stained with Sytox
Green and assigned to phenotypic classes under blue light. Ovaries
were dissected and fixed for immunostaining and in situ hybridization
39 days after injection.

gPCR validation of RNAi knockdown

Total RNA was extracted from ovaries of pRNAi spiders dissected
19-24 days after the first injection, and qPCR was performed in
triplicate as previously described (Ewen-Campen et al., 2013a). Primers
used were CTTCTGGCTTGAACAGAC and GGAAGGTCTGGATCAGTA to
amplify Pt-vasa and CGTTCCATACAGTTCGTC and GAACTTGTGATC-
CAGTCG to amplify Pt-o-tubulin.

Time-lapse recordings

Embryos were dechorionated in 50% bleach, rinsed with ddH,0
and transferred to a 1% agarose-coated 3 cm petri dish. Excess
water was removed, and using an eyelash tool, embryos were
lined up into 3 x 4 grids on the agarose and then transferred to
18 x 18 mm coverslips coated with heptane glue (Scotch 3M
double-sided sticky tape incubated in heptane). The embryo-
containing coverslips were then transferred into fresh 3 cm Petri
dishes, covered with halocarbon oil 700 (Sigma) and imaged at
five-min intervals in a 25 °C temperature controlled room.

Embryonic RNAi

Embryos of stage 3 and 4 (before cumulus migration) were
prepared as described above for time-lapse movies, but arranged
10 x 10 on coverslips. After being transferred onto glue-coated
coverslips embryos were dried for 30 min at 25 °C in a closed jar
filled with Drierite (Fisher) before covering them with 2.4 g of
halocarbon oil 700 (Sigma). Embryos were injected with glass
needles pulled on a Flaming/Brown needle puller (Sutter Instru-
ments), using a Narishige micro-injector. dsSRNA was injected at
2.5 pg/ul supplemented with 5% FITC-dextran (Sigma) to visualize
injected volume. Embryos were allowed to develop under oil until
stage 10 and then removed from the oil as previously described
(Prpic et al., 2008a) and fixed.

Imaging and image analysis

In situ hybridization images, images of embryos for quantifying
egg-laying, and time-lapse recordings were captured with AxioVi-
sion (Zeiss) driving a Zeiss Stereo Lumar microscope or a Zeiss
Axiolmager compound microscope with an AxioCam MRc camera,
or a Zeiss AxioZoom microscope with an AxioCam HRc camera.
Confocal microscopy was performed with a Zeiss LSM 710 or LSM
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780 microscope. Image analyses and assembly were performed
with AxioVision version 4.8, Zen 2009 or 2011 (Zeiss), Photoshop
and Illustrator CS4 or CS5 (Adobe), and Image].

stage 7

stage 8

Results

Cloning of germ cell marker genes of the spider Parasteatoda
tepidariorum

To investigate germ line development in the spider we first
cloned two highly conserved metazoan germ line markers, vasa
and piwi (Ewen-Campen et al, 2010), from Parasteatoda. We
obtained a potential Pt-vasa fragment by degenerate PCR and
RACE-PCR extension. We obtained a near full-length sequence of
Pt-piwi from a maternal and embryonic transcriptome (Posnien
et al., 2014). We confirmed the identity of both genes by phylo-
genetic analysis (Fig. S1A and B).

Germ cell markers are expressed ubiquitously during early spider
development

To determine whether Pt-vasa or Pt-piwi gene products might
reveal a previously unidentified germ plasm in spider oocytes or
early embryos, we performed in situ hybridization for both genes.
Spider ovaries consist of elongated paired ovarian tubes that
merge into a short uterus, which forms the connection to the
genital opening (Foelix, 2010). The youngest oocytes are located
within the epithelium of the ovarian tubes, but during pre-
vitellogenic growth the oocytes begin to bulge out of the ovarian
epithelium into the body cavity. They are covered only by a basal
lamina, and not surrounded by follicle cells as in insect ovaries
(Blining, 1994). As the oocytes continue to grow and protrude
further into the hemocoel, they remain connected to the ovarian
tube by a short stalk (funiculus or pedicel) formed by several disc-
shaped cells. Ovaries of Parasteatoda contain oocytes of several
stages of oogenesis, but spider vitellogenesis begins only after
mating (Jedrzejowska and Kubrakiewicz, 2007; Morishita et al.,
2003). Both Pt-vasa and Pt-piwi genes were expressed at high,
uniform levels in previtellogenic oocytes, which make up all of the
oocyte population in juvenile ovaries and a smaller proportion of
oocytes in adult ovaries (Fig. S3A and F and arrowheads in B and G;
compare with sense controls in Fig. S3D and I). In later stage
oocytes, expression of both genes was enriched in the perinuclear
region, but was ubiquitous and at a low level throughout the

Fig. 1. Pt-Vasa protein expression during oogenesis and early development.
Oocytes, early blastoderm and early germ band stage embryos stained for Pt-Vasa
(red), Nuclear Pore Complex (NPC, green, A-D), a-Tubulin (green, E-]), and nuclei
(Hoechst 33342, blue). Maximum intensity projections of optical sections (A) and
single optical sections (B-D) of spider oocytes. (A). In pre-vitellogenic oocytes
Pt-Vasa is concentrated in large cytoplasmic puncta. (B and C) Single optical
sections through spider oocytes. (B) Oocytes up to a diameter of 80-100 um show
large cytoplasmic puncta of Pt-Vasa (arrowhead). (C) Pt-Vasa puncta size decreases
as oocytes continue pre-vitellogenic growth, and successively more puncta are
located at the oocyte cortex (arrow). (D) In vitellogenic oocytes, Pt-Vasa puncta are
very small and mostly localized at the oocyte cortex. The apparently stronger
Pt-Vasa signal at the point where the oocyte connects to the stalk (bottom of panel)
is a mounting artifact rather than true signal within the oocyte. (E-H) Maximum
intensity projections of optical sections; (E'-H’) transverse sections of optical
section stacks of the same embryos shown in (E-H). (E and E’) In stage 1 embryos,
energids are close to the surface of the egg. Pt-Vasa protein forms small puncta
(arrow) that are ubiquitously distributed throughout the cortex of the embryo.
(Fand F') By stage 2, energids have reached the surface and are forming the cellular
blastoderm. Pt-Vasa puncta are still at the surface of the embryo, either inter-
spersed between the cells (arrow), or within the blastoderm cells (arrowhead).
(G and G’) By stage 4, after formation of the contiguous cellular blastoderm, Pt-Vasa
protein puncta are located both below the surface of the blastoderm (arrow), and
within its cells (arrowhead). (H and H’) At later cellular blastoderm stages, fewer
Pt-Vasa protein puncta are visible, but they remain within cells (arrowhead) and
below the blastoderm (arrow). Caret and asterisk mark the location of former
blastopore and cumulus respectively. (I and J) By germ band formation (stages
7 and 8), Pt-Vasa protein is no longer detectable. L4: fourth walking leg segment.
All scale bars are 20 um. Animal view in E and F'; anterior is to the left in G-J. Stages
here and in all other figures as per Mittmann and Wolff (2012).
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oocyte cytoplasm (Fig. S3A-C and F-H, arrows; compare with
sense controls in Fig. S3E and ]). We did not observe asymmetric
cytoplasmic accumulation of transcripts of either gene at any stage
of oogenesis (Fig. S3).

In some organisms that specify germ cells via germ plasm,
differential enrichment of germ line gene proteins rather than
transcripts is a marker of PGC formation. We therefore wished to
know whether this was also true for Pt-Vasa and Pt-Piwi proteins.
To this end, we made custom antibodies against both spider
proteins (Fig. S2). Western blot (Methods; Fig. S2A) and RNAi
(described below) confirmed the specificity of the o-Pt-Vasa
antiserum. Both a-Piwi antisera that we raised recognized a major
band close to the predicted size of Pt-Piwi on a Western blot, as
well as two minor bands of lower molecular weight (Methods, Fig.
S2B). We therefore interpret the results of a-Pt-Piwi immunostain-
ing using these reagents with caution, as we cannot exclude the
possibility that these antisera recognize both Pt-Piwi and addi-
tional unknown Parasteatoda proteins.

Pt-Vasa protein was detected in the cytoplasm of pre-
vitellogenic oocytes (Fig. 1A). In early pre-vitellogenic oocytes of
a diameter of up to 100 pm, Pt-Vasa was concentrated in multiple
larger cytoplasmic bodies or puncta, which were distributed
throughout the cytoplasm rather than concentrated asymmetri-
cally in a specific cytoplasmic region (Fig. 1A and B). At later stages
of pre-vitellogenic oogenesis, Pt-Vasa puncta were smaller and
Pt-Vasa protein was observed in accumulations all around the
oocyte cortex (Fig. 1C). By the onset of vitellogenesis, when
oocytes have a diameter of at least 130 um, few Pt-Vasa puncta
remained, and the few puncta remaining were predominantly
detected all around the oocyte cortex (Fig. 1D). RNAi-mediated
knockdown of Pt-vasa confirmed that these localization patterns
were specific to the Pt-Vasa protein product (described below). In
summary, Pt-Vasa is not consistently localized to any subcellular
cytoplasmic region or structure within oocytes. Similarly, we did
not detect any consistent localization of Pt-Piwi protein in oocytes
(data not shown).

Since these molecular markers suggested an absence of germ
plasm in spider oocytes, we next examined their expression during
embryogenesis in order to determine the time and place of spider
PGC formation. As both vasa and piwi can be expressed in specific

somatic tissues as well as PGCs in other animals (see Discussion),
our criteria for identifying putative spider PGCs was that they
express products of both vasa and piwi, rather than just one of
these molecular markers, and that they be in anatomical positions
consistent with at least one cytology-based embryological study
from the classical literature. Both genes were expressed in a
similar pattern during early stages of embryonic development.
At early blastoderm stages (stage 2), transcripts were uniformly
expressed in all cells (Figs. 2A; S4A). In some embryos at these
stages, some cells entering or progressing through mitosis
(as judged by nuclear morphology) appear to have higher levels
of Pt-vasa or Pt-piwi transcripts (asterisks in Figs. 2A and E; S4A).
These cells may merely appear to have higher transcript levels
because of their reduced cytoplasmic volume, or they may
genuinely upregulate these genes during cell division. We cannot
distinguish between these possibilities, although the mitotic
defects observed in Pt-vasa and Pt-piwi pRNAi embryos (described
below) lend some support to the latter interpretation. At later
blastoderm stages (stage 3), most cells converge at one pole of the
egg and form the germ disc, which coincides with the formation of
the blastopore (Mittmann and Wolff, 2012). In whole mount
preparations, the blastopore appeared to express transcripts of
both germ cell markers more strongly than neighboring cells
(arrows in Figs. 2B; S4B), suggesting potential support for
Montgomery's 1909 reports of a blastopore (called the “anterior
cumulus” by Montgomery) origin for Parasteatoda (then classified
as Theridium) germ cells. To assess whether this was due to
genuine enrichment for Pt-vasa or Pt-piwi transcripts in specific
cells of the blastopore region, we sectioned embryos of early germ
disc stages. These analyses revealed that the apparently stronger
blastopore expression was due to the multi-layered nature of the
blastopore, and that all germ disc cells in fact expressed both germ
cell marker genes at similar levels at this stage (Fig. 2E, data not
shown for Pt-piwi).

Subsequent to blastopore formation, a cluster of mesenchymal cells
called the cumulus forms near the blastopore and migrates centripe-
tally underneath the germ disc, thereby breaking the initial radial
symmetry of the embryo and leading to dorso-ventral axis formation
(Akiyama-Oda and Oda, 2003). Uniform expression of both Pt-vasa
and Pt-piwi continued during the stages of cumulus formation and

A Pt-vasa B C

Hoechst

D’

Fig. 2. Pt-vasa is expressed ubiquitously during early embryonic development. (A-D and D’) Pt-vasa in situ hybridization and nuclear stain (Hoechst 33342, cyan) on early
embryos. (E-G) Semi-thin sections of embryos stained for Pt-vasa expression and nuclei (Sytox Green, false-colored in orange). (A) Pt-vasa is expressed ubiquitously in all
cells during the blastoderm stage and germ disc formation.(B) Apparent stronger expression in the blastopore (arrow) is due to the multi-layered nature of this structure, as
shown in the corresponding sagittal section (E). During growth zone formation just before germ band formation (C), mesodermal cells of the future growth zone (arrowhead)
temporarily express Pt-vasa at somewhat higher levels than the overlying ectoderm, as also seen in corresponding sagittal sections (F). Shortly after germ band formation
(lateral view: D; posterior view: D’; sagittal section: G), Pt-vasa is expressed uniformly in both mesoderm (G, arrowhead) and ectoderm. Scale bars are 200 pm in A-D’ and
100 pm in E-G. Animal view in A-C; anterior is to the left in D-D’; animal pole is up in E-G.
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migration (stage 5; Fig. S4C and D; data not shown for Pt-vasa). After
cumulus migration, cells at the presumptive posterior/dorsal edge of
the disc, which is where cumulus migration terminates, migrate
towards the future anterior of the embryo, forming the “dorsal field”
at the presumptive posterior (stage 6). The former blastopore region
therefore becomes the caudal lobe, which will give rise to the posterior
body segments of the spider embryo (Mittmann and Wolff, 2012). The
mesodermal cells of the caudal lobe appeared to express Pt-vasa and
Pt-piwi more strongly than the overlying ectoderm in whole mount
preparations (arrowheads in Figs. 2C; S4D-F), and sections confirmed
these differential expression levels (Fig. 2F; data not shown for
Pt-piwi). This stronger mesodermal expression was temporally
restricted: as soon as the germ band formed by stages 7 and 8,
expression was once again uniform in the ectoderm and mesoderm of
the embryo (Fig. 2D and G; S4G and H). In summary, the only
differential enrichment of Pt-vasa and Pt-piwi transcripts during early
embryonic stages was in mesodermal cells at stage 6 (Fig. 2F), and we
consider it unlikely that all mesodermal cells at this stage are PGCs.
Our analysis of Pt-vasa and Pt-piwi transcript expression therefore
suggests that PGCs are not specified before germ band stages.

We then used fluorescent immunostaining to assess whether
PGCs might be revealed by expression of Pt-Vasa and/or Pt-Piwi
protein prior to germ band stages. In early embryos, when
cleavage energids migrate from the center of the egg to its surface
(stage 1), Pt-Vasa protein was first detected in the cortical
cytoplasm (Fig. 1E). The protein appeared aggregated in puncta
that were ubiquitously distributed across the egg surface (Fig. 1E
and E’). Pre-immune controls confirmed that this punctate signal
was specific to the Pt-Vasa antiserum (not shown), and RNAi-
mediated knockdown confirmed that the signal was specific to the
Pt-vasa protein product (described below). As energids cellularized
at the egg surface to form the early cellular blastoderm (stage 2),
Pt-Vasa protein was detected both between and within cells
(Fig. 1F and F’). After germ disc formation (stage 4) Pt-Vasa protein
puncta were additionally detected underneath the mono-layered
germ disc, and within cells of the germ disc and blastopore (Fig. 1G
and G’). By late germ disc stages (stage 5), Pt-Vasa expression had
become weaker and cells had enclosed most Pt-Vasa particles, but
the protein remained evenly distributed in all cells, and was not
restricted to any specific subset of cells (Fig. 1H and H’). By early
germ band formation (stages 7 and 8), Pt-Vasa was barely
detectable (Fig. 11 and ]), and puncta were no longer detected
within cells or underneath the germ band after this stage (not
shown). The expression of Pt-Piwi protein was also ubiquitous in
all stages of early embryonic development (not shown). In sum-
mary, the transcript and protein expression profiles of these two
highly conserved germ cell markers failed to identify likely PGCs at
any embryonic stage before germ band formation, suggesting that
spider germ cells may originate during later embryonic stages.

Germ cells are first visible in later embryonic development as five
pairs of clusters in the opisthosoma

Pt-vasa and Pt-piwi transcripts remained ubiquitously expressed
until late germ band stages (stage 9.1; Figs. 3C; S5A). After the
onset of prosomal limb segmentation (stage 9.2), Pt-piwi expres-
sion levels were reduced in most embryonic tissues but elevated in
five paired clusters in opisthosomal segments 02-06 (Fig. 3D and E),
corresponding to the locations where PGCs were hypothesized to
arise by Kautzsch (1910) in classical embryological studies. Similarly,
both Pt-Piwi (Fig. S5D) and Pt-Vasa (Fig. 3F and G) proteins were
strongly expressed in these clusters. Given that the a-Pt-Piwi signal
(Fig. S5D) is strongest in those cells with the highest levels of Pt-piwi
transcript (Fig. 3E), it is likely that this o-Pt-Piwi antiserum is
specific to Pt-Piwi protein at this stage. Pt-Vasa protein was also
detected in some somatic tissues at and after late germ band stages

(Fig. S6), but none of these tissues also expressed Pt-Piwi protein at
higher levels (not shown), making them unlikely to be the source of
embryonic PGCs. In contrast to Pt-Vasa protein expression in
putative PGCs, Pt-vasa transcript expression remained ubiquitous
throughout late germ band stages, and did not appear enriched in
putative PGC clusters (Fig. S5B and C). These putative PGC clusters
were located ventrally to the mesodermal pouches of each hemi-
segment, directly bordering the yolk (Fig. 3B and H), and remained
there throughout all stages examined. During later development
clusters of cells appeared to move towards one another parallel to
the ventral midline while remaining dorsal to the mesoderm (not
shown), consistent with the reported formation of bilaterally paired
gonad primordia in spider hatchlings of the same family as Para-
steatoda (Rempel, 1957). Cuticle deposition during late embryogen-
esis prevented us from unambiguously tracing PGCs through to
hatching stages using our molecular markers. Together, our gene
expression data suggests that PGCs first arise at late germ band
stages, consistent with an inductive mode of germ cell specification.

Maternal Pt-vasa and Pt-piwi are required for oogenesis

To determine the function of these genes in the spider,
we conducted parental RNAi (pRNAi) knockdown experiments.
Pt-vasa or Pt-piwi dsRNA was injected into the hemolymph of
adult females. Effective knockdown was confirmed in ovaries of
injected mothers by in situ hybridization (Figs. S7A and B, S8L and
M), and for Pt-vasa also by qPCR (Fig. S7I) and Pt-Vasa immunos-
taining (Fig. S7E-H). We noted, however, that very early oocytes of
injected mothers possessed detectable levels of Pt-vasa transcripts
39 days after injections (Fig. S7B), suggesting either that these
stages of oogenesis were impervious to RNAi due to their high Pt-
vasa expression levels, or that they had recovered from the
knockdown effects of RNAi within the 39 days following the final
injection. Importantly, late stage oocytes and embryos laid by
injected mothers contained undetectable levels of Pt-vasa tran-
scripts (Fig. S7A-D), Pt-Vasa protein product (Fig. STE-H), or Pt-
piwi transcripts (Fig. S8L and M) even up to 25 days following
injection, indicating that we had effectively removed the maternal
contribution of these genes from early embryos at least until germ
rudiment formation.

As a role for vasa in oogenesis has been shown in several
animals (Fabioux et al., 2009; Gruidl et al., 1996; Kuznicki et al.,
2000; Ohashi et al., 2007; Salinas et al., 2012; Styhler et al., 1998),
we asked whether this role was conserved in Parasteatoda by
counting all eggs laid by females injected with Pt-vasa dsRNA and
control females injected with DsRed dsRNA over a period of at least
30 days following injection. While control females deposited an
approximately constant number of eggs within each of the first
five egg sacs (cocoons) and continued to produce cocoons there-
after (eggs not counted after fifth cocoon), Pt-vasa RNAi females
began laying significantly fewer eggs after the third egg sac, and
stopped laying eggs entirely after depositing a maximum of five
cocoons (Fig. 4A; Table S1). A very similar phenotype was observed
for Pt-piwi pRNAI: Pt-piwi dsRNA injected females laid significantly
fewer eggs than controls in every clutch following injection
(Fig. S8A, Table S1), and ceased egg laying completely after at
most five egg sacs. These data suggest that as in other animals,
Pt-vasa and Pt-piwi play a role in spider oogenesis.

Maternal Pt-vasa and Pt-piwi are required for mitotic integrity
in early embryogenesis

As we wished to assess whether maternal provision of these
genes was required for germ cell specification, we allowed pRNAi
embryos to develop for four days after egg deposition, to a stage
when DsRed control embryos have developed germ cells. However,



282 E.E. Schwager et al. / Developmental Biology 402 (2015) 276-290

Mesoderm

stage 9.1

stage 9.2

stage 10

Fig. 3. Parasteatoda germ cells are first detectable in late embryogenesis. (A) Schematic drawing of late germ band stage (stage 9.2) Parasteatoda embryo highlighting the
opisthosomal areas shown in panels (C-E’) (blue) and (F-G) (yellow). Red dotted line indicates plane of sectional schematic shown in (B) and orthogonal optical section
shown in (H). O: opisthosomal segment. (B) Schematic drawing of a cross section of one opisthosomal hemisegment illustrating the location of a PGC cluster at the time it
arises relative to neuroectoderm, mesoderm and yolk. (C-E) Ventral opisthosomal views of embryos stained for Pt-piwi transcript. (C'-E’) Nuclear stains (Hoechst 33342) of
the same embryos shown in C and D. (C) At stage 9.1, Pt-piwi is expressed uniformly in the mesoderm of the opisthosoma. (D and E) At and after stage 9.2, the expression of
Pt-piwi decreases in the mesoderm and increases in the PGC clusters in opisthosomal segments 2-6 (arrows). (F and G) Maximum projections of optical sections through
embryos stained for o-Tubulin (green), nuclei (Hoechst 33342, blue) and Pt-Vasa (red). Pt-Vasa is strongly expressed at early stage 9.2 in five PGC clusters (arrows) in
opisthosomal segments 2-6 (F), and PGC number increases during subsequent germ band development (G). (H) Orthogonal optical section of a confocal stack through PGC
clusters in opisthosomal segment O6. Scale bars are 200 um in C-E and 50 pm in F-H. Anterior is to the left in all panels.
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Fig. 4. Pt-vasa pRNAi decreases egg laying and results in embryonic lethality. (A) Number of eggs per egg sac deposited by Pt-vasa pRNAi adult females (pink bars) decreases
notably over time and is significantly different from controls (green bars; asterisks: Student's t-test p < 0.01) by the 4th egg sac (one egg sac is deposited every 3-5 days).
Numbers within bars indicate numbers of females examined; error bars show the 95% confidence interval. See Table S1 for raw data. (B and C) Embryos laid by Pt-vasa pRNAi
mothers (C) show a higher proportion of lethality (black shading) compared to controls (B) from the 2nd egg sac onwards; by the 4th egg sac all embryos die before forming
a germ band. See Table S2 for raw data. (D-K) Snapshots from time-lapse images of control (top row) and Pt-vasa pRNAi (bottom row) embryos imaged under identical
conditions at times indicated at bottom left (see Movies 1, 2). (D) Time =0 min corresponds to stage 3 when cumulus (arrow) has formed. The blastopore (arrow) is visible in
both embryos. (E) Cumulus migration (arrowhead) proceeds normally in control embryos, as do (F) anterior-posterior axis formation (dotted line indicates clearing of
blastoderm cells from presumptive posterior pole to create the dorsal field) and (G) germ band formation (dotted line indicates lateral edges of germ band; asterisk indicates
embryo posterior). (H-K) In Pt-vasa pRNAi embryos, embryonic cells gradually contract towards the center of the germ disc following gastrulation and fail to form a germ

band. Scale bars are 200 pm.

eggs that were laid by Pt-vasa RNAI females did not develop past
the germ disc stage (Fig. 4H-K, Movies 1 and 2). Initial develop-
ment of Pt-vasa pRNAi embryos appeared normal, including germ
rudiment and visible blastopore formation (Fig. 4H). In situ
hybridization for the cumulus marker Pt-fascin (Akiyama-Oda
and Oda, 2010) revealed that a cumulus is specified in Pt-vasa
PRNAi embryos (Fig. 5), and cumulus migration appeared to
initiate normally (not shown). At the time that control embryos
began dorsal field formation (dotted line in Fig. 4F), however, the
germ disc of Pt-vasa pRNAi embryos began to shrink in size
(Fig. 4]).

As control embryos formed a germ band (Fig. 4G), Pt-vasa pRNAi
embryos collapsed to an irregular clump of cells (Fig. 4K) and did
not develop further. This embryonic lethality was markedly more
frequent in pRNAi embryos than in DsRed RNAi controls, occur-
ring in 89% of all embryos from the third egg sacs (n=978), and in
100% of all eggs collected from the fourth and fifth egg sacs
(n=732) laid by Pt-vasa pRNAi females, compared to a maximum of

20% in DsRed controls across all egg sacs (1=4036) (Table S2;
Fig. 4B and C). Non-specific phenotypes (abnormal or severely
delayed development) were observed at similar rates in control
and Pt-vasa pRNAi embryos (Table S2; Fig. 4B and C). Qualitatively
and quantitatively similar egg laying and embryonic lethality
phenotypes were observed for Pt-piwi pRNAi embryos (Fig. S8B-K,
Movie 3).

To further investigate the nature of the embryonic lethality,
we examined the expression of cleaved caspase 3, a conserved
marker for apoptosis in animal cells (reviewed by Zakeri and
Lockshin, 2008). We detected a few cells undergoing apopto-
tic death as early as 1 day after egg deposition (d AED) in
Pt-vasa pRNAi embryos (Fig. 6B), and by 4d AED most cells
appeared to be undergoing apoptosis (Fig. 6C). In addition, multi-
ple pycnotic nuclei were visible (Fig. 6B, C, and C’), and many cells
were irregularly shaped, very large, and contained multiple nuclei
(Fig. 6C”), suggesting failures of cytoskeletal integrity, mitotic
progression, or both.
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stage 5 early stage 5 late

Fig. 5. Pt-vasa vasa pRNAi embryos still form migrating cumulus mesenchymal (CM) cells. In situ hybridization using the CM cell marker Pt-fascin (Akiyama-Oda and Oda,
2010) on DsRed (A,B) and Pt-vasa (C,D) pRNAi embryos of stage 5. All Pt-vasa pRNAi embryos were taken from cocoons that at later stages displayed 100% embryonic lethality.
Pt-vasa pRNAi embryos still form CM cells which migrate (n=11/11), but as the embryos die, the CM cell marker expression gets weaker.

a-Tubulin

Hoechst
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e

Fig. 6. Pt-vasa pRNAI results in caspase-mediated apoptosis in early embryogenesis. Maximum projections of confocal stacks of parts of embryonic germ discs 1 day after egg
deposition (AED) (A and B) and an entire germ disc rudiment 4 days AED (C). C' and C” are higher magnification views of regions of the same embryo shown in (C).
(A) Control embryos show no detectable cleaved caspase 3-positive cells (red) at 1 day AED. (B) Pt-vasa pRNAi embryos comprised only a small number of apoptotic cells at
1 day AED, and cell shapes of the blastoderm layer were irregular. (C) As development proceeds, most cells in Pt-vasa pRNAi embryos become positive for cleaved caspase 3.
These cells display pycnotic nuclei (C’, arrow) and large a-Tubulin rings surrounding multiple nuclei (C”, arrowheads), suggesting cytoskeletal abnormalities and/or
breakdown. All scale bars are 50 pm.

In addition to its long-recognized role in the germ line, vasa Upon examination of dividing cells in early Pt-vasa pRNAi embryos,
family members have recently been implicated in cell cycle pro- we detected numerous indications that their failure to undergo
gression of both somatic and germ cells (Yajima and Wessel, 2011b). embryogenesis past early germ rudiment stages was due to mitotic
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Fig. 7. Pt-vasa is required for early embryonic mitotic divisions and spindle integrity. (A) Control embryos at the blastoderm stage (fixed 1 day after egg deposition (AED))
have a uniform germ rudiment with nuclei of roughly uniform size (white: Hoechst 33342). (B and C) Pt-vasa pRNAi embryos of the same age as controls show significantly
fewer total cells by stage 5. (D) Control embryos have uniformly sized nuclei. (E and F) Pt-vasa pRNAi embryos have nuclei of irregular sizes, including abnormally large nuclei
with condensed chromosomes but no signs of further mitotic activity (arrowheads); such nuclei are almost never observed in control embryos (Fig. S9G). (G) Mitotic cells in
control embryos show well-formed spindles (marked with o-Tubulin, green). (H and I) Mitotic cells of Pt-vasa pRNAi embryos possess significantly higher proportions of
morphologically abnormal spindles (arrowheads). (J) Anaphase cell in control embryo showing normal chromosome segregation. (K and L) In Pt-vasa pRNAi embryos
anaphase cells show a significantly higher incidence of abnormal or incomplete chromosome segregation (arrowhead). Scale bars are 100 um in A (applies also to B); 20 pm
in D (applies also to E) and G (applies also to H); 10 um in J (applies also to K). Bar graphs of mitosis defect phenotype quantifications showing (C) number of cells per
embryo, (F) percent of cells with oversized nuclei, (I) percent of mitotic cells with wild type spindles, and (L) percent of anaphase cells with lagging chromosomes in DsRed
PRNAIi embryos and (green bars) vasa pRNAi embryos (pink bars) at three different stages: stage 2 (blastoderm), stage 3-4 (germ disc), stage 5 (cumulus migration). Graphs
display the number of embryos scored (n) on top of the respective bars. For each embryo scored, all nuclei were counted (C) and scored for mitotic defects as shown in (E, H
and K). Statistical significance between treatments was determined by Student's t-test: **p < 0.001, **p < 0.01, *p < 0.05. Error bars indicate the 95% confidence interval.

defects. In control embryos, interphase nuclei were uniformly sized
(Fig. 7A and D) while mitotic cells displayed condensed chromo-
somes clearly arranged at a metaphase plate and underwent
anaphase with robust spindles (Fig. 7G). Mitotic cells of Pt-vasa
PRNAi embryos appeared to progress through S-phase and chromo-
some condensation, based on nuclear morphology and size (Figs. 7E,
S9G). However, in contrast to controls, embryos had fewer cells at
later germ disc stages (Fig. 7B and C). At all embryonic stages,
mitotic cells of Pt-vasa pRNAi embryos did not have distinct
metaphase plates (Fig. SO9A-D), and possessed irregularly shaped
symmetrical accumulations of a-tubulin on either side of the
condensed chromosomes (Figs. 7H and I, S9F) that were similar to
the rudimentary spindles reported in vasa morphant sea urchin
embryos (Yajima and Wessel, 2011a). Those cells that did enter

metaphase and anaphase showed defective chromosome segrega-
tion in which some chromosomes lagged behind at the former
metaphase plate position and did not segregate together with
others (Fig. 7K and L, SOE). In contrast, anaphase cells of control
embryos showed complete segregation in which no chromosomes
remained behind at the former metaphase plate (Fig. 7] and L). All
of these aberrant mitotic morphologies occurred significantly
more frequently in Pt-vasa pRNAi embryos than in controls
(Fig. 7F, I and L). Similar to Pt-vasa pRNAi embryos, Pt-piwi pRNAi
embryos showed a significant reduction of cells in mitosis, wild type
spindles and cells in anaphase as well as significantly more cells
with large fragmented nuclei (Fig. S10). These data suggest that the
roles played by vasa in mitotic progression in Drosophila germ line
stem cells (Pek and Kai, 2011) and sea urchin early somatic
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Fig. 8. Pt-vasa might not be required for PGC specification. (A and C) Pt-vasa eRNAi reduces vasa transcripts in most eRNAi embryos until at least late germ band stages. (A-D)
Flat-mounted opisthosomal regions. (A) Pt-vasa in situ hybridization on stage 9 control embryos. (C) Pt-vasa in situ hybridization on stage 9 Pt-vasa eRNAi embryos:
transcripts are undetectable above background levels. In situ hybridization for Pt-piwi reveals that Pt-vasa eRNAi embryos (D) possess PGCs (arrows), as do DsRed-vasa eRNAi
control embryos (C). (A’-D’) Nuclear stains (Hoechst 33342) of the same embryos shown in (A-D). Scale bars are 200 um. Anterior is to the left in all panels. All embryos
shown are at stage 9.2, when PGCs are first unambiguously detected by Pt-piwi transcript expression (see Fig. 3).

blastomeres (Yajima and Wessel, 2011a) as well as the role of piwi in
early embryonic cell divisions in Drosophila (Mani et al., 2014), may
also be conserved in Parasteatoda.

The potential role of Pt-vasa in spider germ line specification

In Drosophila, a maternal supply of vasa is required to ensure
PGC specification during embryogenesis (Schiipbach and
Wieschaus, 1986). Since Pt-vasa pRNAi embryos died shortly after
stage 4 and hence did not survive to a stage where they could have
formed germ cells (stage 9.2), our maternal RNAi experiments
could not address whether Pt-vasa was also required for spider
PGC specification. We therefore tried to overcome the maternal
requirement for this gene in early embryonic cell divisions by
performing embryonic knockdowns (eRNAi). We injected embryos
with either Pt-vasa dsRNA or DsRed dsRNA at early germ rudiment
stages and permitted them to develop under halocarbon oil until
stage 10 (see Methods). Our injection of Pt-vasa dsRNA into early
embryos (stage 3 or 4; see Methods) might be expected to
abrogate both maternal and zygotic transcripts. However, the fact
that Pt-vasa eRNAi embryos survived past dorsal field formation
(stage 6) indicates that sufficient maternally provided Pt-vasa
transcripts must have remained to sustain early development.
Both Pt-vasa (n=1025) and control (n=456) eRNAi embryos
showed similar survival rates of approximately 90% (Table S3),
but a larger percentage of vasa eRNAi embryos displayed delayed
development compared to controls (43.9% vs. 30.9%, Table S3). We
found that the same proportion of Pt-vasa eRNAi embryos and
DsRed eRNAi control embryos (98.6%, n=218 vs. 93.6%, n=109)
had successfully formed germ cell clusters (Fig. 8, Table S3). This
suggests that Pt-vasa may be dispensable for PGC specification.
However, in situ hybridization of Pt-vasa on a randomly chosen
subset of Pt-vasa eRNAi embryos suggested that although detect-
able Pt-vasa transcripts were abolished in 67.6% of embryos
(n=222; compared to compared to 7.6% (n=150) in DsRed control
embryos; Fig. 8C), the remaining 32.4% of embryos had apparently
wild type levels of Pt-vasa transcript (not shown). Perhaps due to
the fact that Pt-vasa transcripts may not have been significantly
reduced in nearly one third of embryos, we did not detect a

significant reduction in Pt-vasa transcript levels via qPCR in pooled
batches of Pt-vasa eRNAi embryos (not shown). As double in situ
hybridization/immunostaining protocols have not been optimized
for this system, we do not currently have an efficient way to score
both Pt-vasa transcript levels and PGC formation in the same
embryo. We therefore cannot definitively conclude that Pt-vasa
plays no zygotic role in the initial specification of the germ line in
the spider Parasteatoda. Further studies employing targeted gen-
ome editing or more efficient zygotic knockdown methods will be
needed to determine the role(s) of Pt-vasa in establishing the
embryonic germ line.

Discussion

No molecular evidence for a maternally supplied germ plasm
in the spider

In other studies, expression analyses of the genes vasa and piwi
have successfully led to the identification of germ plasm in other
organisms where morphological analysis alone had failed to reveal
this structure (Tsunekawa et al., 2000; Wu et al., 2011; Yoon et al.,
1997). In contrast, our study showed that while the spider
orthologues of these crucial germ plasm components were
strongly expressed during oogenesis, we did not find the tran-
scripts or protein products of these genes to be asymmetrically
localized in oocytes or early embryos of P. tepidariorum. This is
consistent with ultrastructural analyses from several spider spe-
cies showing the absence of localized electron dense granular
material, which has provided evidence of a localized germ plasm
in other animals, in early spider embryos and ovaries (Choi and
Moon, 2003; Kondo, 1969; Suzuki, 1995; Suzuki and Kondo, 1994).
In C. elegans, cytoplasmic bodies called P granules that contain
proteins orthologous to Pt-Vasa (Gruidl et al., 1996; Kuznicki et al.,
2000) are uniformly distributed throughout oocytes and
uncleaved embryos, but are partitioned to the primordial germ
cell P4 during early cleavages and serve as a marker for specifica-
tion of the germ line from the P lineage (Strome and Wood, 1982).
In contrast, the punctate accumulations of Pt-Vasa protein that we
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observed during early oogenesis in Parasteatoda disappeared from
oocytes at vitellogenesis, and did not become concentrated asym-
metrically in any region of the ooplasm. Similarly, after the
reappearance of uniformly distributed Pt-Vasa puncta at the start
of embryogenesis (stage 1), the puncta became undetectable by
stage 5, rather than becoming asymmetrically segregated to any
specific group of cells or region of the blastoderm. We therefore
suggest that the preponderance of available evidence argues
against the existence of germ plasm in spiders.

We cannot, however, definitively exclude the possibility that
germ line markers not examined here (for examples see Ewen-
Campen et al., 2010) might be localized in Parasteatoda oocytes
and embryos. Our own attempts to find further specific germ line
markers have so far been unsuccessful. We were not able to find a
P. tepidariorum nanos ortholog by degenerate PCR. Similarly no
nanos ortholog was found in an extensive developmental tran-
scriptome of Parasteatoda (Posnien et al., 2014). Other obvious
candidates including orthologs of common germ line markers
Tudor, dazl, germ cell less, and another 32 candidate genes were
not localized to germ cells or asymmetrically localized in oocyte
cytoplasm (Meng, Schwager and Extavour, unpublished). More
extensive screens for spider germ line markers might help to
address this problem in the future. Currently, however, our
expression data from ovaries and embryos do not support the
existence of a maternally supplied germ plasm in spider oocytes
and early embryos.

The spider germ line is likely of opisthosomal mesodermal origin

Although all cells of the blastoderm stage express both Pt-vasa
and Pt-piwi transcripts, we consider it highly unlikely that all cells at
this stage are fated to be PGCs. Similarly broad expression of these
genes in most or all cells of early embryonic stages has been observed
in many metazoans, including leech (Cho et al., 2014), sea urchin
(Juliano et al., 2006; Voronina et al., 2008), amphipod crustacean
(Ozhan-Kizil et al, 2009), snail (Swartz et al, 2008), polychaete
(Rebscher et al., 2007), ascidian (Fujimura and Takamura, 2000) and
fruit fly (Lasko and Ashburner, 1988) species. In all of these cases, the
widespread expression of these genes is likely due to the maternal
provision of these genes, but functional genetic, experimental
embryological and/or lineage tracing experiments have shown that
it is not the case that all early cells are fated to be PGCs in these
species (Cho et al., 2014; Gerberding et al., 2002; Huettner, 1923;
Rabinowitz et al., 2008; Rebscher et al., 2012; Shirae-Kurabayashi
et al.,, 2006; Yajima and Wessel, 2011c). We therefore propose that
the classical description of germ cell development in the spider
Agelena labyrinthica (a funnel web spider) by Kautzsch (1910) most
closely matches our molecular data from Parasteatoda. Based on
histological staining of sectioned embryos, Kautzsch described germ
cells as differentiating from the mesodermal pouches in opisthoso-
mal segments 03-06 shortly after opisthosomal limb buds become
visible. This is exactly the time where germ cells are first visible in
the common house spider embryo, using Pt-piwi transcript or Pt-
Vasa protein as a marker. In contrast to Kautzsch, we also consis-
tently observe a germ cell cluster in the second opisthosomal
segment (02). However, this cluster is often much smaller than the
other germ cell clusters (often only 2-3 cells compared to approxi-
mately 5-15 for the other clusters). The fact that the PGCs arise in
segments 02-06 and the primordial gonad is located in the region of
segments 02-05 (Rempel, 1957) implies that Parasteatoda PGCs
undergo a limited short-range migration of no more than one
segment. This is in contrast to most well established model organ-
isms, in which PGCs arise far from the site of gonad formation and
undertake long-range migration to colonize the gonads. However, an
abdominal or posterior mesoderm PGC origin, together with limited
or absent PGC migration, is commonly reported for many arthropods,

including holometabolous and hemimetabolous insects (e.g. Ewen-
Campen et al., 2013a), syncarid crustaceans (Hickman, 1937), and the
funnel web spider (Kautzsch, 1910).

In contrast, we found no support for the observations that
Montgomery (1909) reported for Parasteatoda. Using our molecu-
lar markers, we did not identify germ cells in the blastopore
(which Montgomery termed the “anterior cumulus”). During
stages of opisthosomal segmentation, Montgomery reported
another group of putative germ cells medially in the opisthosoma,
which is another observation that we found no molecular evidence
to support. Montgomery's observations were based solely on
nuclear and/or cell size and the density of the nuclei, however,
and he indicated that his own interpretations were tentative by
labeling them with question marks in his drawings (see
Montgomery, 1909 Plate II Figs. 24 and 28; Plate IIl Fig. 37B).
Moreover, he was not able to trace the early-identified putative
PGCs through to the later stages at which he was able to clearly
identify embryonic germ cells, i.e. after completion of inversion
(the process of dorsal and subsequent ventral closure in spiders;
after stage 14 as per Mittmann and Wolff (2012)). Our findings
therefore also suggest that a molecular reexamination of claims of
early germ cell origin in the blastopore in other chelicerate phyla
could be useful in understanding the ancestral state of chelicerate
and arthropod germ cell specification. These claims come from
studies examining harvestmen, solifuges and scorpions, in which,
using observations of histological sections alone, authors were
unable to convincingly trace these cells to definitive embryonic
germ cells in late embryos (Brauer, 1894; Faussek, 1889, 1891;
Heymons, 1904).

The reported expression pattern of a vasa orthologue in the
mite Tetranychus urticae (Dearden et al., 2003) has been inter-
preted as support for PGCs arising from within the yolk mass of
the blastoderm stage, and is difficult to consolidate with descrip-
tions of germ line specification in any other chelicerate species to
date. It is possible that mites, having a body plan that is derived
with respect to other chelicerates (Barnett and Thomas, 2012),
may also have a divergent mode of PGC specification. Alternatively,
the vasa-positive cells observed deep in the yolk of mite embryos
(Dearden et al., 2003) might not be PGCs. Expression data for
additional PGC markers in mites could help to resolve this issue.
Indeed, multiple studies, including the one presented here, sug-
gest that the expression of just one protein or transcript product of
either of vasa or piwi can be insufficient to confidently identify
likely PGCs, given the extensive domains of somatic expression
and thickness effects caused by the multi-layered nature of early
embryonic regions such as the blastopore (see for example Cho
et al.,, 2014; Ewen-Campen et al., 2013a,b).

In summary, we can first confidently identify Parasteatoda PGCs
at late germ band stages among the mesoderm of the opistho-
soma. We note that we cannot formally exclude the possibility that
PGCs arise earlier than stage 9.2, and express PGC-specific markers
that are not any of the 34 conserved metazoan germ cell markers
whose expression we have examined (this report; Meng, Schwager
and Extavour, unpublished). However, based on the available
cytological and molecular data, we suggest that the best-
supported hypothesis is that germ cells are of opisthosomal
mesodermal origin in the spider (Fig. 9).

Somatic roles of vasa and piwi

Somatic expression of vasa has been widely documented in
animals, including in presumptive multipotent somatic cell lineages
of cnidarians (Mochizuki et al., 2001; Rebscher et al., 2008),
ctenophores (Alié et al., 2010), planarians (Pfister et al, 2008;
Rouhana et al., 2010), polychaetes (Dill and Seaver, 2008; Rebscher
et al, 2007), mollusks (Swartz et al, 2008) and sea urchins
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Fig. 9. Simplified phylogeny of chelicerates within arthropods indicating our
current understanding of germ line specification in these groups. The only evidence
for germ cell determination using inherited germ plasm (red squares) is from some
groups within Pancrustacea (insects and crustaceans). All other arthropods are
thought to specify their germ cells without germ plasm (blue squares). Within
chelicerates (yellow shading), classic literature using histological and cytological
evidence has suggested germ cells originating near the blastopore (orange circles)
for harvestmen, scorpions and solifuges, but a possible mesodermal origin at later
germ band stages (green circles) has been proposed for ticks. Mites are the only
other chelicerate group for which molecular germ cell marker data have been
reported, but the embryonic origins of their germ cells remain unclear. See text for
references and discussion. Our data suggest that spiders do not use inherited germ
plasm for the specification of their germ line and that their germ line originates at
later germ band stages. Phylogenetic relationships derived from Giribet and
Edgecombe (2012) and Schultz 2007).

(Voronina et al., 2008). In addition, expression of vasa has also been
recently documented in the male fruit fly somatic gonad (Renault,
2012), and in somatic cells, including somatic stem cells, of other
insects (Ewen-Campen et al, 2013b, 2012). In the centipede
S. maritima, vasa is expressed in most or all cells of the embryo
from the earliest blastoderm stages examined through to segmented
germ band stages, but expression is enriched in the PGCs (Green and
Akam, 2014). In spite of this, the specific roles that vasa plays in
these somatic tissues are still largely unclear, due to a lack of
functional data in many of these taxa. In planarians, a vasa
orthologue has been shown to be required for regeneration
(Rouhana et al., 2010). However, precisely how vasa regulates this
process remains unknown, although it has been speculated that this
function relies on the post-transcriptional regulation capacities of
Vasa that have been demonstrated in other systems (Yajima and
Wessel, 2011b).

Recently a new role for vasa genes has been uncovered by
functional data from the germ line of Drosophila (Pek and Kai,
2011) and somatic blastomeres of the sea urchin (Yajima and
Wessel, 2011a). In both of these systems, vasa is required for
mitotic progression. Given the involvement of a close Vasa protein
relative, the DEAD-box helicase Ded1, in cell cycle control in yeast
(Grallert et al., 2000), it has been speculated that this role of vasa
genes might have preceded its translational control function in the
germ line of Metazoa (Yajima and Wessel, 2011b). Our observa-
tions of spindle formation failure and chromosome segregation
defects in spider vasa pRNAi embryos are consistent with this
hypothesis, and consistent with the hypothesis that vasa’s role in
cell cycle regulation may be conserved in bilaterian animals
(Yajima and Wessel, 2011b).

Somatic expression of piwi is an increasingly well-known
phenomenon across Metazoa. piwi is often associated with adult
somatic stem cells in both wild type and regenerating animals
(Alié et al., 2010; Funayama et al., 2010; Leclere et al., 2012; Zhu
et al., 2012). Its expression has also been documented in differ-
entiating non-stem cell tissues, including the nervous system,
during embryonic development of an aphid (Lu et al., 2011) and
a polychaete (Giani et al., 2011). We did not observe expression of
Pt-piwi in differentiating somatic cells or in putative somatic stem
cells during Parasteatoda embryogenesis. However, similar to
Pt-vasa, its broad expression pattern in all cells of blastoderm
stages appears to reflect a requirement for cell divisions in early
spider embryogenesis. Interestingly, a very similar somatic role for
piwi was recently described in Drosophila, where piwi is expressed
in all embryonic cells throughout blastoderm stages (Mani et al.,
2014). In embryos laid by females homozygous for a piwi protein
null allele, dividing cells exhibit a variety of mitotic defects,
including abnormal spindle assembly and abnormal nuclear mor-
phology. The results of our Pt-piwi pRNAi experiments suggest that
piwi's role in these aspects of the cell cycle may be conserved
between Drosophila and Parasteatoda.
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Table S1. The effects of Az-vasa pRNAI or Az-piwi pRNAI on egg laying of injected females. Asterisks indicate egg sacs with
clumped eggs that could not be separated for accurate counting. Abbreviations: SD = standard deviation, 95% CI = 95% confidence

interval.
Spider # 1 2 3 4
vasa 5> #2 152 161 287 218 0
vasa 5’ #3 464 398 194 194 0
vasa 5’ #6 362 367 344 355 293
vasa 5’ #8 329 * 419 244
vasa 5’ #9 298 383 309 222 *
vasa 5’ #10 362 312 393 211 108
vasa 5’ #11 367 342 387 315 281
vasa 5’ #12 204 * 0
vasa 5’ #13 482 * 480
vasa 5’ #14 591 442 455 406 *
vasa 3’ #1 * 297
vasa 3’ #2 336 391 * * *
vasa 3’ #3 * 296 * 0
vasa 3’ #4 319 336 380 *
vasa 3’ #5 457 337 360 0
Mean 363 339 334 217 136
SD 117 71 130 133 144
95% CI 63 40 74 83 127
piwi 5° #2 212 394 320 298 200
piwi 3’ #1 239 267 313 371 *
piwi 3’ #2 437 * 304 0 0
piwi 3’ #3 286 368 350 200 273
piwi 3’ #4 418 342 337 348 *
Mean 318 343 325 243 158
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SD 103 55 19 151 141

95% CI 91 54 16 132 160

DsRed #4 337 394 334 298 525

DsRed #7 510 398 386 343 364
DsRed #8 295 263 332 299 *

DsRed #9 432 * 479 487 564

DsRed #10 415 493 416 402 360

DsRed #12 470 473 480 432 409

DsRed #13 565 544 313 357 460

Mean 432 428 391 374 447

SD 94 99 70 70 85

95% CI 70 79 52 52 68
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Table S2. The effects of At-vasa pRNAI or Az-piwi pRNAi on embryonic development of eggs laid by injected females. Egg sac
number is indicated in the top row. Abbreviations: WT = embryos showing wild type development. A/D = embryos showing abnormal
or delayed development, L = lethal embryos. Percentages and n = number of embryos counted per cocoon are given. Dashes indicate
egg sacs that could not be fixed (because of clumped, inseparable eggs, which occur in some wild type and DsRed pRNAI control egg
sacs as well). We retained all injected females and their embryos for analysis. Had we not done so, the proportion of lethal embryos
from all pooled DsRed pRNAi cocoons would have been lower on average throughout all cocoons, and we would not have detected
the apparent rise in lethality in the fourth cocoon (see below and Figure 4B)
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Egg sac 3 S
% %
Spider % A/ % n % A/ % n % % % n % % % n % % % n

WT D L WT D L WT A/D L WT A/D L WT A/D L
vasa 5’ #2 37 27 39 100 0 100 82 0 100 100 0 0 100 47
vasa 5’ #3 51 17 32 117 96 67 0 0 100 65 0 0 100 65
vasa 5’ #6 78 22 194 77 22 1 126 17 48 36 163 0 0 100 100 0 0 100 65
vasa 5’ #8 46 46 57 9 21 70 112 0 0 100 65 0 0 100 65
vasa 5’ #9 72 4 25 109 23 35 41 150 0 0 100 65 0 0 100 65 - - -
vasa 5’ #10 48 23 29 119 4 14 84 104 0 0 100 65 0 0 100 65 - - -
vasa 5’ #11 38 60 2 144 26 67 149 0 0 100 65 0 0 100 65 0 0 100 65
vasa 5’ #12 - - - 100 65
vasa 5’ #13 39 55 6 194 100 65 0 0 100 65
vasa 5’ #14 - - - 18 54 28 184 0 0 100 65 0 0 100 65
vasa 3’ #1 16 84 0 92 1 9 90 82
vasa 3’ #2 27 37 36 144 7 66 27 116 0 0 100 65 0 0 100 65 - - -
vasa 3’ #3 - - - 7 81 19 74 0 0 100 65
vasa 3’ #4 37 25 37 102 0 100 60 0 0 100 65 - - -
vasa 3’ #5 35 27 38 82 0 100 60 0 0 100 65
piwi 5’ #2 6 52 43 127 0 100 103 0 0 100 51 100 50 100 65
piwi 3’ #1 96 4 89 85 0 101 65 34 1 85 100 65 100 65
piwi 3’ #2 87 11 114 47 46 7 74 0 0 100 65
piwi 3’ #3 90 122 97 2 1 90 95 1 136 0 100 65 100 65
piwi 3’ #4 90 4 71 79 13 9 117 12 40 49 86 0 100 65 100 65
DsRed #4 48 20 31 205 52 17 31 178 43 22 35 167 40 31 30 98 49 27 25 202
DsRed #7 100 0 0 100 89 11 1 122 85 14 1 102 83 15 2 82 81 18 1 74
DsRed #8 17 68 15 81 33 58 9 88 69 30 1 116 68 29 97 68 31 1 85
DsRed #9 - - - 74 24 2 197 72 27 1 231 - - - 52 46 2 127
DsRed #10 77 2 21 61 71 2 28 258 76 2 22 190 52 31 17 185 75 0 25 179
DsRed #12 40 40 20 85 28 43 29 147 41 20 39 61 30 19 51 94 - - -
DsRed #13 81 17 2 96 92 7 1 73 78 20 1 74 79 16 5 82 73 25 2 99

Schwager et al. Supplementary Information, Page 5 of 10




Table S3. The effects of Pt-vasa eRNAi on specification of PGCs in injected embryos. Summary of embryonic RNAi experiments.
Left columns show summary of phenotypes observed after injections. Abbreviations: WT = embryos with wild type development,
A/D = embryos with abnormal or delayed development, ND = embryos that failed to develop a germ disc. Percentages and n =
number of all counted embryos per treatment are given. Centre columns: Assessment of Pt-vasa expression in a randomly chosen
subset of embryos injected with either DsRed or Pt-Vasa dsRNA. n represents the number of all embryos per treatment per egg sac.
Right columns: Presence or absence of PGCs was scored by in situ hybridization with P¢-piwi probe. Percentages and n = number of
embryos per treatment per egg sac are given.

Injected % % . %0
eggsac Treatment | n % % % n reduced normal n % with without
P WT A/D ND Pt-vas.a Pt-vas‘a PGCs PGCs
expression expression
1 DsRed 87 483 264 253 19 21.1 789 21 714 7.7
Pt-vasa 98 449 286 265 15 73.3 26.7 19 94.7 1.0
2 DsRed 95 726 221 53 31 129 87.1 36 972 1.0
Pt-vasa 280 532 421 46 69 739 26.1 70 97.1 20
3 DsRed 93 548 419 32 26 0 100 19 100 0
Pt-vasa 189 429 503 69 41 76 24 35 100 0
4 DsRed 86 419 430 151 15 0 100 20 100 0
Pt-vasa 203 409 498 94 40 60 40 40 100 0
5 DsRed 95 726 221 53 15 0 100 13 100 0
Pt-vasa 255 447 424 129 57 579 42.1 54 100 0
total DsRed 456 586 309 105 106 7.6 92.5 109 93.6 7.0
Pt-vasa 1025 46,0 439 10.1 222 67.6 324 218 98.6 30
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Supplementary Figure Legends

Figure S1. Phylogenetic analysis of Pt-Vasa and Pt-Piwi. Best-scoring maximum
likelihood cladograms are shown with bootstrap values from 2000 replicates at nodes.
(A) Parasteatoda Vasa (Ptep Vasa) groups with other members of the Vasa family of
RNA helicases, rather than with the closely related PL10 or Belle proteins. Pt-Vasa
branches as a sister group to other arthropod Vasa proteins, forming a monophyletic clade
to the exclusion of vertebrate and lophotrochozoan Vasa proteins. (B) Parasteatoda Piwi
(Ptep_Piwi) groups with other arthropod Piwi proteins, rather than with other Argonaute
family members.

Figure S2. Western blot controls of antibodies. (A) Pt-Vasa Western blot. a-Vasa from
rabbit 2297 recognizes a protein of about 80 kDa in Parasteatoda ovary extract (lane E).
(B) Pt-Piwi Western blot. a-Piwi serum from rabbits 159 and 160 both recognize the
purified antigen (P) and bands of ~75 kDa and ~90 kDa in ovary extract (lane E). The
antisera were tested at concentrations of 1:1,,000 to 10:10,000 with similar results across
all concentrations; results from 1:1000 are shown here. The antiserum from rabbit 160
also recognizes a smaller protein of ~70 kDa in the ovary extract. Red asterisks indicate
expected molecular weight in kDa of Pt-Vasa in (A) and of Pt-Piwi in (B).

Figure S3. Pt-vasa and Pt-piwi transcript expression in ovaries. Juvenile (A, F) and
adult (B-E, G-J) ovaries showing Pt-vasa (top row) and Pt-piwi (bottom row) expression.
(A, F) In juvenile ovaries, Pt-vasa and Pt-piwi are expressed most strongly in the
perinuclear cytoplasm of large oocytes (arrows), and throughout the cytoplasm of smaller
oocytes (arrowheads). (B, G) In pre-vitellogenic oocytes of adult ovaries Pt-vasa and Pt-
piwi are strongly expressed (arrowhead). (C, H) Both Pt-vasa and Pt-piwi show
perinuclear expression in late stage oocytes of adult ovaries (arrows). Sense probe
hybridization for Pt-vasa (D: pre-vitellogenic oocyte; E: vitellogenic oocyte) and Pt-piwi
(I: pre-vitellogenic oocyte; J: vitellogenic oocyte) show that antisense signal in (B-C) and
(G-H) is not background. Scale bars are 100 um in A-C, E, F-H J and 200 pm in D and 1.

Figure S4. Pt-piwi is expressed ubiquitously and at uniform levels during early
development. All panels show embryos stained for Pt-piwi transcript and nuclei
(Hoechst 33342, cyan). Pt-piwi is expressed ubiquitously in all cells during the early
blastoderm stage (A) and blastopore formation (B). Expression at the blastopore (arrow)
seems stronger due to the multi-layered nature of the blastopore rather than truly enriched
expression in these cells. (C) During cumulus migration the appearance of stronger
expression in multilayered regions of the embryo, including the former blastopore region
(arrow) and the cumulus (asterisk), is similarly due to thickness effects. (D-F) As the
cumulus disappears at the rim of the germ disc (asterisk in D), a few cells at the site of
caudal lobe formation (arrowhead) appear to express Pt-piwi more strongly than other
cells (arrowheads). (G-H) During germ band formation, all tissues express Pt-piwi at
similar levels. Scale bars are 200 um. E, F, G, H are lateral views, anterior is to the left.
E’, F, G’, H’ are posterior views, anterior is to the left.
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Figure S5. Pt-vasa transcript and Pt-Piwi protein expression in late embryogenesis.
(A-C) Ventral opisthosomal views of embryos stained for Pt-vasa expression. (A’-C”)
Nuclear stains (Hoechst 33342) of the same embryos shown in A-C. (D) Single optical
section of an embryo stained for a-Tubulin (green), nuclei (Hoechst 33342: blue) and Pt-
Piwi (red). Pt-Piwi expression is strongest in the PGC clusters (white arrows). (D) Pt-
Piwi channel only of same image shown in (D); PGC clusters indicated with yellow
arrows. Scale bars are 200 um in A-C’ and 50 pm in D.

Figure S6. Additional somatic tissues stained by Pt-Vasa antibody. Maximum
intensity projections of confocal sections of embryos stained with Pt-Vasa and a-tubulin
antibodies (except B) and Hoechst (except A). (A) Dorsal region of opisthosomal
segments O3 and O4 during inversion, revealing large cells stained by Pt-Vasa antibody.
(B) Walls of the dorsal heart (arrowheads) are stained by Pt-Vasa antibody, here shown
after dorsal closure. (C) Cells covering the head and the labrum are stained by Pt-Vasa
antibody. Also note muscle cells in the cheliceres (arrowhead). (D) After dorsal and
ventral closure, putative muscle strands are stained by Pt-Vasa. Ch: cheliceres, PcL:
Precheliceral lobe, Lb: Labrum, O4: opisthosomal segment 4. Anterior is to the left and
all scale bars are 50 pm.

Figure S7. Pt-vasa pRNAI effectively abrogates Pt-vasa transcripts and Pt-Vasa
protein. In situ hybridization for Pt-vasa on control pRNAi ovaries (A) and stage 5
embryos (C). (B) In situ hybridization for P#-vasa on ovaries of females injected with Pt-
vasa dsSRNA shows no detectable Pt-vasa transcripts in late oocytes (arrowhead) but
detectable transcript levels in the youngest oocytes (arrow). Ovaries were dissected for
analysis 39 days after the first injection. (D) Stage 5 embryos laid by Pt-vasa pPRNAi
females show no detectable Pt-vasa transcripts. (C’, D”) show nuclear stains (Hoechst
33342) of the same embryos shown in (C, D). (E-H) Vasa protein expression is not
detected in Pt-vasa pPRNA1 embryos. Maximum intensity projections of confocal scans of
parts of embryonic germ discs stained for Pt-Vasa (red) and Hoechst 33342 (white).
Embryos of both treatments were imaged using the same confocal imaging settings. Scale
bars are 200 pm in A-D and 20pm in E-H. (I) gPCR results showing reduction of Pt-vasa
transcript in ovaries dissected from DsRed dsRNA injected females compared to ovaries
from vasa dsRNA injected females. Ovaries for qPCR were dissected from injected
females 19-24 days after the first injection. (J) Pt-Vasa Protein is significantly reduced in
ovaries from Pt-vasa dsRNA injected females compared to DsRed dsRNA-injected
females or control spiders injected with water. Ovaries were dissected for
immunostaining 18 days after the first injection. Box-whisker plots display measurements
of the average fluorescence intensity of Pt-Vasa signal in the single brightest optical
section of individual oocytes of a similar size range. *** = student’s t-test p < 0.0005.

Figure S8. Pt-piwi pRNAI decreases egg laying and results in embryonic lethality.
(A) Number of eggs per egg sac deposited by piwi pRNA1 adult females (orange bars)
decreases notably over time and is significantly different from controls (green bars;
asterisks: t-test p<0.01) in nearly all egg sacs (one egg sac is deposited every 2-4 days).
Numbers within bars indicate numbers of females examined; error bars show the 95%
confidence interval. See Table S1 for raw egg-laying data. (B, C) Embryos laid by piwi

Schwager et al. Supplementary Information, Page 8 of 10



pRNA1 mothers show a hi§her proportion of lethality compared to controls from the 2™
egg sac onwards; by the 4™ egg sac all embryos are dead. See Table S2 for raw
embryonic phenotype data. (D-K) Snapshots from time-lapse images of control (top row)
and piwi pRNA1 (bottom row) embryos imaged under identical conditions at times
indicated at bottom left (see Movies S1, S3). (D) Time = 0 minutes corresponds to stage
3 when cumulus (arrow) has formed. (E) Cumulus migration (arrowhead) proceeds
normally in control embryos, as do (F) anterior-posterior axis formation (dotted line
indicates clearing of blastoderm cells from presumptive posterior pole) and (G) germ
band formation (dotted line indicates lateral edge of germ band; asterisk indicates embryo
posterior). (H) piwi pRNA1 embryos form a cumulus (arrow) that begins migration (I:
arrowhead). (J) Embryos begin formation of the presumptive posterior (dotted line) but
do not complete the process. (K) Embryonic cells subsequently contract towards the
center of the germ disc and fail to form a germ band. In situ hybridization for piwi on
controls (L) and piwi RNAi embryos (M) confirms that pRNAI is effective at abrogating
piwi transcripts through to at least stage 6. (L.’, M) show nuclear stains (Hoechst 33342)
of the same embryos shown (L, M). Scale bar is 200 wm in all panels.

Figure S9. Quantification of mitotic defects in Pt-vasa pRNAi embryos. Bar graphs
displaying the (A) average total number of cells in mitosis, (B) average percentage of
cells in mitosis, (C) average total number of cells in anaphase, (D) average percentage of
mitotic cells in anaphase, (E) average total number of anaphase cells with lagging
chromosomes, (F) average total number of wild type spindles, and the (G) average total
number of cells with oversized nuclei of DsRed pRNAi1 embryos (green bars) and Pt-vasa
pRNAI1 embryos (pink bars) at three early embryonic stages. The number of embryos
scored is displayed in italics underneath each bar; error bars display the 95% confidence
interval. For each embryo scored, all nuclei were counted (Fig. 7C) and scored for mitotic
defects, as shown in Fig. 7E, H, K.

Figure S10. Quantification of mitotic defects in P-piwi pRNAi embryos. Bar graphs
displaying the (A) average total number of cells in mitosis, (B) average percentage of
cells in mitosis, (C) average total number of cells in anaphase, (D) average percentage of
mitotic cells in anaphase, (E) average total number of anaphase cells with lagging
chromosomes, (F) average total number of wild type spindles, and (G) average total
number of cells with oversized nuclei of DsRed pRNA1 embryos (green bars) and Pt-piwi
pRNAI1 embryos (orange bars) at embryonic stage 5. The number of embryos scored is
displayed in italics underneath each bar; error bars display the 95% confidence interval.
For each embryo scored, all nuclei were counted scored for mitotic defects, as in the
analysis of Pt-vasa pPRNA embryos (Fig. S9).
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Supplementary Movie Legends

Movie S1. Development of DsRed pRNAi embryo. Time-lapse movie of a control
embryo (DsRed pRNA1) encompassing 36.35 h from cumulus formation (stage 4)
through to germ band formation (stage 8). Scale bar is 200 um.

Movie S2. Development of Pt-vasa pRNAi embryo. Time-lapse movie of a Pt-vasa
pRNA1 embryo encompassing 27 h starting at cumulus formation (stage 4). Cumulus
migration does not occur and the germ rudiment contracts and dies without forming a
germ band. See also Figures 4-5. Scale bar is 200 um.

Movie S3. Development of Pt-piwi pRNAi embryo. Time-lapse movie of a Pt-piwi
pRNA1 embryo encompassing 48.4 h starting at cumulus formation (stage 4). Cumulus
migration does still occur in this embryo but the germ rudiment contracts soon afterwards
and dies without forming a germ band. See also Figure S8. Scale bar is 200 um.
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relative Pt-vasa expression level
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Schwager et al. Figure S8
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