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SUMMARY

Lifetime reproductive capacity is a critical fitness
component. In insects, female reproductive capacity
is largely determined by the number of ovarioles, the
egg-producing subunits of the ovary [e.g., 1]. Recent
work has provided insights into ovariole number
regulation in Drosophila melanogaster. However,
whether mechanisms discovered under laboratory
conditions explain evolutionary variation in natural
populations is an outstanding question. We investi-
gated potential effects of ecology on the develop-
mental processes underlying ovariole number
evolution among Hawaiian Drosophila, a large adap-
tive radiation wherein the highest and lowest ovariole
numbers of the family have evolved within 25 million
years. Previous studies proposed that ovariole num-
ber correlated with oviposition substrate [2–4] but
sampled largely one clade of these flies and were
limited by a provisional phylogeny and the available
comparative methods. We test this hypothesis by
applying phylogenetic modeling to an expanded
sampling of ovariole numbers and substrate types
and show support for these predictions across all
major groups of Hawaiian Drosophila, wherein ovar-
iole number variation is best explained by adaptation
to specific substrates. Furthermore, we show that
oviposition substrate evolution is linked to changes
in the allometric relationship between body size
and ovariole number. Finally, we provide evidence
that the major changes in ovarian cell number that
regulate D. melanogaster ovariole number also regu-
late ovariole number in Hawaiian drosophilids. Thus,
we provide evidence that this remarkable adaptive
radiation is linked to evolutionary changes in a key
reproductive trait regulated at least partly by varia-
tion in the same developmental parameters that op-
erate in the model species D. melanogaster.

RESULTS AND DISCUSSION

Adult Reproductive Traits of Hawaiian Drosophila

Wemeasured three adult traits relevant to reproductive capacity

(body size, ovariole number, and egg volume) from field-

collected females, lab-reared first filial generation (F1) offspring

of field-collected females, and females from laboratory strains

(Figure 1; Table S1). Species identities of field-collected females

were assigned based on morphological keys or DNA barcoding

(Tables S2 and S3). All traits ranged over an order of magnitude

within Hawaiian Drosophila: body size ranged from 0.71 mm for

Scaptomyza devexa to 3.12 mm for D. melanocephala; ovariole

number per female ranged from two for S. caliginosa to 88.5

for D. melanocephala; and egg volume ranged from 0.01 mm3

for the Scaptomyza (Bunostoma) spp. group (S. palmae/S.

anomala) to 0.2 mm3 for D. adunca, highlighting the diversity of

life history traits in Hawaiian Drosophila.

Within the melanogaster subgroup species, species-specific

differences in ovariole number are largely heritable [e.g., 5]. To

test whether this is also the case in Hawaiian Drosophila, we

compared ovariole numbers in wild-caught females and their

lab-reared F1 offspring, across five species with different egg-

laying substrates. We observed no significant differences be-

tween the ovariole numbers of these two generations, regardless

of natural substrate (Figure S1), indicating that species-specific

differences in ovariole number are also strongly genetically

determined in Hawaiian Drosophila.

Larval Ecology Influences Ovariole Number Evolution
Major shifts in ovariole number have often been attributed to

changes in life history strategies. Ovoviviparity is often correlated

with reduced ovariole number in Diptera [6], suggesting that

increased parental investment could be linked to reduced
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Figure 1. Reproductive and Ecological Traits of Hawaiian Drosophila in Phylogenetic Context

Compiled adult life history traits (grayscale gradients) collected herein and by Kambysellis and Heed [2] mapped onto a phylogeny of Hawaiian Drosophila

constructed from available mitochondrial and nuclear genes. Egg-laying substrate of each species is indicated by colored boxes: bark (brown), generalist (black),

sap flux (yellow), leaf (green), fungus (purple), fruit (red), spider eggs (blue), flowers (pink), and unknown (gray). Boxes with solid outlines denote data collected in

the present study; boxes outlined with four notches denote data represented in our data and those of Kambysellis and Heed [2]; and boxes with dotted outlines

denote data represented only in Kambysellis and Heed [2]. Missing boxes indicate data points either that were not previously reported [2] or that we were unable

to obtain from field-caught samples. Black lines at right delineate the five major groups of HawaiianDrosophila as follows: SCAP, Scaptomyza; PW, picture wing;

MM, modified mouthparts; H, haleakalae; AMC, antopocerus-modified tarsus-ciliated tarsus.

See also Figure S1 and Tables S1, S2, and S3.
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fecundity in these flies, as observed in other animals [7]. In the

Drosophila melanogaster subgroup, previous studies have sug-

gested that reproductive strategies and ovariole number evolve

in response to oviposition or larval nutrition substrate [8, 9]. Most

melanogaster subgroup species are generalists that oviposit on

a variety of decaying fruits, and their mean ovariole number

ranges from 18 to 43 per female [10]. Lachaise [9] proposed

that the high ovariole number observed in the generalists

D. melanogaster and D. simulans may be driven by the frequent

oviposition opportunities available to generalist species

compared to specialists. In contrast, D. erecta and D. sechellia

are specialists on Pandanus fruit and the toxic Morinda fruit,

respectively [11, 12], and D. sechellia has the lowest reported

ovariole number of the group [13]. This reduction in ovariole num-

ber has been hypothesized to be the result of increased egg size

as an adaptation to feeding on the toxicMorinda [14] or to be due

to lower insulin signaling levels evolved in response to the rela-

tively constant nutritional input provided by substrate specializa-

tion [15]. However, themelanogaster subgroup is not well suited

for a broader understanding of ovariole number evolution, as

most species share similar oviposition substrates (i.e., rotting

fruit), and there are few independent instances of the evolution

of specialists.

In contrast, HawaiianDrosophila have evolved to specialize on

a variety of oviposition substrates, including decaying flowers,

leaves, fungi, sap fluxes, and the bark of native plants, as well

as the eggs of native spiders [16]. Moreover, these flies exhibit

the most extreme interspecies range of ovariole number re-

ported in the genus, ranging from two to 101 per female [2].

Hawaiian Drosophila have undergone rapid island radiation

from a common ancestor in the past 25 million years, leading

to approximately 1,000 extant species [17, 18]. Most of the spe-

cies diversity of HawaiianDrosophila is spread across fivemono-

phyletic species groups that share genetic, morphological, and

ecological similarities and rely on different oviposition substrates

[18–21], as follows (Figure 1): Scaptomyza are small species that

lay eggs on leaves, flowers, and fruits, and only approximately

one third of Scaptomyza species are reported to be generalists.

Picture wing (PW) species are larger species with striking

pigment patterns on their wings. PW species primarily lay eggs

on decaying bark or branches of native trees, though some

specialize on sap fluxes [16]. Modified mouthpart (MM) species,

which have male-specific modifications on mouthparts used

during mating [22], have the largest range of egg-laying sub-

strates, including bark, leaves, fruit, and sap fluxes. However,

among MM species, the predominant egg-laying substrate is

bark, and those MM species that are not bark breeders are

mostly generalists and leaf specialists [16]. Haleakalae species

are darkly pigmented flies that only lay eggs on fungi. Lastly,

most antopocerus-modified tarsus-ciliated tarsus (AMC) spe-

cies are leaf breeders, though there are a few exceptions that

have evolved bark breeding [18].

Within the five major clades of Hawaiian Drosophila, ovariole

number is highest in the PW species (up to 88 per female) and

lowest in Scaptomyza and AMC species (as few as two per

female) [2]. Dramatic differences in ovariole number between

species were historically suggested to be associated with evolu-

tionary shifts between oviposition substrates [2]. Subsequent

studies [3, 4] found significant associations between ovariole
numbers and some substrate types, in support of the earlier pre-

dictions. However, these studies either lacked a phylogenetic

framework [2] or incorporated phylogenies including largely

PW species [3, 4] that have since been improved upon with

expanded taxon and locus sampling [18, 19, 21, 23].

Using an updated phylogenetic framework (see STAR

Methods) and expanding taxon sampling across all major groups

of Hawaiian Drosophila, we tested this hypothesis by comparing

the fit of evolutionary models of ovariole number that accounted

for ecologically driven evolution to those that did not. We com-

bined original observations reported in the present study with

data previously published by Kambysellis and Heed [2] (see

STARMethods). The combined dataset nearly doubles the num-

ber of species previously studied, includes both specialist

species (which oviposit on bark, sap flux, leaves, fungus, fruit,

flowers, or spider eggs) and generalist species (which oviposit

on multiple decaying substrates), and adds new substrate types

(spider eggs and flowers). We compared the fit of five models to

our data, two of which—(1) Brownian motion (BM) and (2) an

Ornstein-Uhlenbeckmodel with a shared optimum for all species

(OU1)—did not take into account the oviposition substrate, and

three of which were nested ecological models based on alterna-

tive methods of substrate classification: (3) the OU2 model

assumed two states, bark breeders and all other species, to

test previous suggestions that bark breedingmay drive evolution

of ovariole number [3, 4]; (4) the OU3 model assumed three

states, Scaptomyza specialists on spider eggs and flowers,

bark breeders, and species using any other substrate, to test hy-

potheses that substrates influence ovariole number evolution

because of their differences in carrying capacity and field

predictability [2, 8]; and (5) the OU8 model categorized each

oviposition substrate separately. These five models were fit

over 100 trees sampled from the posterior distribution of a

Bayesian phylogenetic analysis to account for phylogenetic

uncertainty.

We found that models accounting for larval ecology explained

the ovariole number diversification in Hawaiian Drosophila (Fig-

ure 2A) better than those that did not. Comparing the three

ecological models, we found that the three-state model (OU3),

which accounted for both bark breeders and Scaptomyza spe-

cialists, was supported as the best-fit model across a majority

of trees for ovariole number (DAICc [Akaike information criterion]

> 2 as compared to OU2 and OU8 models; Data S1). Estimated

theta values for the OU3 model showed that bark breeders have

more ovarioles than species that oviposit on other substrates,

suggesting that evolution of higher ovariole numbers accompa-

nied the transition to bark breeding from likely non-bark breeding

ancestors (Figures 2B and 2C; Data S1), consistent with earlier

hypotheses [3, 4]. In contrast, Scaptomyza species may have

experienced a dramatic decrease in ovariole number as they

independently specialized on spider eggs and flowers (Fig-

ure 2C). Taken together, these results confirm and extend previ-

ous work in two important ways. First, they support the sugges-

tions of Kambysellis and colleagues [2–4] that shifts in

oviposition substrate may have contributed to the evolution of

diverse ovariole numbers. Further, these results account for

phylogenetic history, using robust comparative methods, and

expand the previous taxon sampling to show that this trend ap-

plies not only to the PW flies that were most heavily studied
Current Biology 29, 1–8, June 3, 2019 3
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Figure 2. Different Ecological States Tested for OU Analysis

(A) Comparison of Akaike information criterion (AICc) and weighted AICc values for models testing the relationship between oviposition substrate and ovariole

number. Values are for model fit of Brownian motion (BM) and the Ornstein-Uhlenbeck model with one optimum (OU1) or with multiple optima (OUMs) with

different combinations of oviposition substrate categories, calculated with the R package OUwie v.1.48 [24]. Oviposition substrates were categorized as follows:

OU2 categorizes species that lay eggs on bark and non-bark; OU3 categorizes species into bark breeder, spider egg/flower breeder, and other; and OU8

categorizes each species according to the eight oviposition substrates represented (bark, flower, spider egg, fruit, leaf, generalist, fungus, and sap flux). Models

were tested over 100 posterior distribution BEAST trees using nuclear and mitochondrial gene sequences. Bold indicates the best supported model.

(B) A two-state model (OU2) of bark breeders (brown) and non-bark breeders (white).

(C) Three-state model (OU3) that codes bark breeders (brown), spider egg and flower breeders (blue), and other oviposition substrates (white).

(D) Eight-state model (OU8) that codes each egg-laying substrate separately, color coded as in Figure 1. Pie charts show the maximum likelihood ancestral state

estimates at each node, calculated with the rayDISC function in the R package corHMM,v.1.18 [25].

See also Data S1.
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previously [3, 4] but also across all major groups of the adaptive

radiation of Hawaiian Drosophila.

Evolution of Specialist Habitats Changes Allometry of
Reproductive Traits
Across animals, potential fecundity sometimes correlates posi-

tively with body size [e.g., 26, 27]. The range of Hawaiian

Drosophila body sizes is greater than that of other members of

the genus, spanning an order of magnitude (Table S1). To deter-

mine whether changes in allometric growthmight underlie repro-

ductive trait evolution, we analyzed the allometric ratio of such

traits using a phylogenetic least-squares (PGLS) analysis and

thorax volume (thorax cubed length) as a proxy for body size.

We found that, across all Hawaiian Drosophila, thorax volume

was significantly positively correlated with both ovariole number

(Figure 3A; Table S4) and egg volume (Figure 3B; Table S4).

However, individual species groups show differences in trends

for allometric ratios of reproductive traits. In PW and MM spe-

cies, body size is correlated positively with ovariole number (Fig-

ures 3A1 and 3A2) but not with egg volume (Figures 3B1 and

3B2). In contrast, AMC and Scaptomyza species have a positive

correlation with body size and egg volume (Figures 3B3 and 3B4)

but not ovariole number (Figures 3A3 and 3A4). For PW,MM, and

AMC, there is a negative correlation between ovariole number

and proportional egg size (Tables S2 and S4), and there is a

negative correlation between ovariole number and egg volume

in AMC and Scaptomyza (Table S4).

We note that these trends are associated with differences in

life history strategies between groups. In PWandMMgroup spe-

cies, ovariole number increases with increasing body size (Fig-

ures 3A1 and 3A2): PW species are primarily bark breeders

that oviposit eggs in clutches of up to 100 eggs [2], and about

half of MM species are bark breeders [16]. Our analysis suggests
4 Current Biology 29, 1–8, June 3, 2019
that bark breeding was ancestral to both species groups (Fig-

ure 2C). In contrast, the AMC and Scaptomyza species groups,

in which ovariole number and body size are decoupled (Figures

3A3 and 3A4), contain very few bark breeding species and,

instead, have evolved to use a variety of different substrates.

AMC group species are primarily leaf breeders. Scaptomyza

species include specialists on leaves, flowers, fruits, and spider

eggs, as well as host plant specialist species that oviposit on all

parts of the plant, and fewer than 5% of Scaptomyza are bark

specialists [16]. In sum, while a positive correlation between

body size and fecundity is commonly posited in egg-laying ani-

mals [e.g., 26, 27], we did not find universal support for this trend

across Hawaiian Drosophila. This is consistent with previous

studies on Diptera, wherein trends toward higher fecundity or

ovariole number in larger animals observed within species [26]

contrast with between-species differences in ovariole number

that do not always correlate with body size [9, 29].

Larval Ovary Somatic Cell Number Determines Ovariole
Number
Ovariole number is determined during larval development, when

a specific group of cells called terminal filament cells (TFCs) form

stacks, called terminal filaments (TFs), which serve as the begin-

ning point of each ovariole [30]. While in at least some insects, TF

destruction during pupal stages can also contribute to final

ovariole number [31], TF formation appears to be a prevalent

mechanism determining ovariole number between and within

Drosophila species [32–34]. This then leads to the question of

what developmental processes determine how many TFs will

form. We previously identified two cell number and cell behavior

parameters that can alter TF number and, thus, ovariole number:

(1) changes in TFC number per TF and (2) changes in total TFC

number [32]. To determine whether the same developmental
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Figure 3. Allometric Relationship between Life History Traits in

Hawaiian Drosophila

Scatterplots of log-transformed adult measurements with phylogenetically

transformed trend lines generated by averaging runs from PGLS analysis

across 100 posterior distribution BEAST trees, performed with the R package

nlme v.3.1-121 [28]. Trend line of the consensus tree is denoted in red when

there was a significant relationship between the two traits and black when

PGLS analysis did not support a significant relationship (Data S1).

(A–A4) Ovariole number plotted against thorax volume (in cubedmillimeters) in

(A) all specimens, (A1) PW, (A2) MM, (A3) AMC, and (A4) Scaptomyza.

(B–B4) Egg volume (in cubed millimeters) plotted against thorax volume (in

cubed millimeters) in (B) all specimens, (B1) PW, (B2) MM, (B3) AMC, and (B4)

Scaptomyza.

See also Table S4.
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processes that regulate ovariole number in laboratory popula-

tions also underlie the evolution of ovariole number in natural

populations, we measured TF and TFC numbers in the devel-

oping larval ovaries of Hawaiian Drosophila. Our analysis of 12

species representing four of the major Hawaiian Drosophila spe-

cies groups showed that, even over a range of ovariole numbers

spanning an order of magnitude (Figure 4; Table S5), larval TF

number per ovary essentially corresponded to adult ovariole

number per ovary (Table S5). Although TFC number per TF varied

somewhat between species (Figure 4A; Table S5), PGLS anal-

ysis showed no correlation between TFC number per TF and to-

tal TF number (Table S6). In contrast, average total TFC number

was strongly positively correlatedwith TF number (Figure 4B; Ta-

bles S5 and S6), suggesting that, as in laboratory populations of

D. melanogaster, changes in TFC number underlie ovariole num-

ber evolution in Hawaiian Drosophila.

The developmental processes underlying ovariole number

evolution are particularly interesting in light of the allometric

changes in Hawaiian Drosophila species groups. There has

been some debate as to whether allometry constrains or facili-

tates adaptive evolution [e.g., 35]. In Hawaiian Drosophila, the

allometric relationship between two important female reproduc-

tive traits—ovariole number and egg size—was coupled to body

size in different groups in different ways: when ovariole number

was coupled with body size, egg size was not, and vice versa

(Figure 3). These trends were associated with bark breeding in

the PW and MM groups, where ovariole number was coupled

with body size (Figures 1 and 2).While the phenotypic integration

of ovariole number and egg volume appears tightly regulated

across insects [36], the coupling of ovariole number to body

size appears more flexible in Hawaiian Drosophila, suggesting

that, in this context, heritable changes in allometry may

contribute to adaptive evolution.

Ovariole number is highly polygenic [e.g., 5, 37] and is regu-

lated by both intrinsic and extrinsic growth factors. Many of

these genes, including Hippo signaling, ecdysone, and insulin-

like peptides, are pleiotropic and can also regulate body size

[e.g., 15, 38–40]. Thus, we propose that the mechanistic basis

for evolutionary change of ovariole number on different sub-

strates may be changes in the relative influence of nutritionally

regulated circulating growth factors on the one hand, and cell-

autonomous growth on the other hand, on ovarian development

during larval and pupal stages. For example, we speculate that,

on certain substrates, the larval ovarymay become less sensitive

to nutritionally mediated growth factors by evolving lower

expression levels of growth factor receptors and relying more

on tissue-specific growth factors, which could include local insu-

lin release or cell proliferation pathways such as Hippo signaling.

In summary, by combining phylogenetic comparative

methods with comparative developmental analyses of both

wild-caught flies and laboratory strains, we have identified

potential mechanisms of evolutionary change in ovariole number

operating at three levels of biological organization. First, evolu-

tionary shifts in ecological niche can predict the dramatic differ-

ences in ovariole number in Hawaiian Drosophila. Second,

whether adult body size is coupled with ovariole number or

egg volume differs between species groups with different ovipo-

sition substrates, suggesting that the allometric growth relation-

ships between these traits evolve dynamically. Finally, changes
Current Biology 29, 1–8, June 3, 2019 5
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Figure 4. Terminal Filament Cell Number Predicts Terminal Filament Number in Hawaiian Drosophilids

(A–C) Bar graphs for (A) terminal filament cell (TFC) number per terminal filament (TF), (B) total TFC number per larval ovary, and (C) TF number per larval ovary

representing the mean and SD of each parameter, as well as the phylogenetic relationship between the species shown (bottom). Gray panel below (B) and (C)

indicates sample sizes used to determine total TFC number and mean TF number, respectively (n = number of ovaries from lab-born larvae of wild-caught

females; Table S5). Gray-outlined box below (C) indicates mean ovariole number (ON) per adult ovary (Table S1) and sample sizes used to determine mean

ovariole number (n = number of wild-caught adult females; Table S1) for each species.

(D–F) Late third instar larval ovaries stained for nuclei (purple) and F-actin (green) for (D)S. caliginosa (flower breeder), (E)D. silvestris (bark breeder), (G)D.mitchelli

(egg-laying substrate unknown), and (F) D. tanythrix (leaf breeder). White arrowheads indicate TF structures in the ovary.

See also Tables S5 and S6.
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in ovariole number from 2 to 60 per individual can be explained

by changes in total TFC number, suggesting that ovariole

number diversity evolves through the same developmental

processes, regardless of the specific ecological constraints or

selective pressures. Thus, by integrating ecology, organismal

growth, and cell behavior during development to understand

the evolution of ovariole number, this work connects the ultimate

and proximate mechanisms of evolutionary change in reproduc-

tive capacity.
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Mouse anti-Engrailed/Invected Developmental Studies

Hybridoma Bank

4D9; RRID: AB_528224

Biological Samples

DNA from field collected Hawaiian Drosophila This study Table S2

Chemicals, Peptides, and Recombinant Proteins

FITC-conjugated Phalloidin Sigma Cat# P5282

Hoechst 33342 Sigma Cat# B2261

Vectashield Anti-fade mounting medium Vector Labs Cat# H-1000

Dynazyme DNA Polymerase Thermo Scientific Cat#: F501

ExoSAP-IT Thermo Scientific Cat#: 78201

Critical Commercial Assays

DNeasy Blood and Tissue DNA extraction kit QIAGEN Cat#: 69506

Deposited Data

COI sequences from picture wing species identified
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2018/tree/master/sequence_data_methods/species_
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Adult and larval phenotypic data This study https://github.com/shchurch/hawaiian_Drosophila_ovaries_

2018/blob/master/data.txt

Hawaiian Drosophila phylogeny This study using

sequences from

[18, 19, 21, 23]

https://github.com/shchurch/hawaiian_Drosophila_

ovaries_2018

Oligonucleotides

COI F: ATT CAA CCA ATC ATA AAG ATA TTG G [18] N/A

COI R: TAA ACT TCT GGA TGT CCA AAA AAT CA [18] N/A

COII F: ATG GCA GAT TAG TGC AAT GG [18] N/A

COII R: GTT TAA GAG ACC AGT ACT TG [18] N/A

ND2 F: AGCTATTGGGTTCAGACCCC [18] N/A

ND2 R: GAAGTTTGGTTTAAACCTCC [18] N/A

Software and Algorithms

ImageJ NIH https://imagej.nih.gov/ij/

4Peaks Nucleobytes https://nucleobytes.com/4peaks/index.html

Phyutility v2.2.6 [41] https://github.com/blackrim/phyutility

MAFFT v7.130b [42] https://mafft.cbrc.jp/alignment/software/

Gblocks v091b [43] http://molevol.cmima.csic.es/castresana/Gblocks/

Gblocks_documentation.html

PartitionFinder v1.1.1_Mac [44] http://www.robertlanfear.com/partitionfinder/

RAxML v8.2.3 [45] https://cme.h-its.org/exelixis/web/software/raxml/

index.html

BEAST v2.3.2 [46, 47] http://beast.community/

CIPRES cluster Cyberinfrastructure for

Phylogenetic Research

http://www.phylo.org/
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TreeAnnotator [50] http://beast.community/treeannotator

R v3.2.0 [51] https://www.r-project.org/

Nlme v3.1-121 [28] https://cran.r-project.org/web/packages/nlme/

Ape v3.3 [52, 53] https://cran.r-project.org/web/packages/ape/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Cassan-

dra G. Extavour (extavour@oeb.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Field collections of Hawaiian Drosophila

Field collections of Hawaiian Drosophila were conducted under the Department of Land and Natural Resources of Hawai’i native

invertebrate scientific collection permits FHM14-305, FHM14-353, and HAVO-2013-SCI-0002. Collections were made at the Koke’e

State Park and Kui’a Natural area reserve (NAR) on Kauai, West Maui Forest Reserve, Makawao Forest Reserve, and the Nature

Conservancy’s Waikamoi Preserve on Maui, and Hawaii Volcanoes National Park and Upper Waiakea Forest Reserve on Hawai’i

island. Flies were collected by aspirating flies from traps or sponges containing fermenting fruit and fungi, or by sweeping and sorting

leaf litter in forests.

Husbandry of Hawaiian Drosophila

Field-caught females were maintained on yeast-less Wheeler-Clayton medium or Drosophila standard laboratory medium at 18�C at

80% humidity. Each vial contained a piece of tissue paper (Kleenex) moistened with distilled water that was steeped with bark of

Clermontia spp. at ambient temperature for several days to stimulate oviposition [54]. In addition, AMC species were supplemented

with pieces of decaying Cheirodendron leaves, and S. caliginosawas supplemented with morning glory flowers (Ipomea acuminata),

both of which were collected from the field and frozen overnight to eliminate mites.

Larvae of picture wing subgroup and antopocerus species of the AMC subgroup have longer development times than the other

species studied herein, and larvae of these species were fed additional food, which was made as follows: 6g of Agar and 225mL

distilled water were mixed in a 1L beaker and microwaved for two minutes. 60 g cornmeal, 6.6g roasted soybean meal and 7.5g

brewer’s yeast weremixed, blended and added to the beaker alongwith an additional 300mL distilled water, andmixedwith a spoon.

Lastly, three tablespoons of Karo light corn syrup and one tablespoon of unsulfured molasses was added to the mix, and the mixture

wasmicrowaved for threeminutes. Food wasmixed every minute during microwaving until the mixture was close to boiling point and

started to rise up within the beaker. The beaker containing hot food was placed at room temperature until the mixture was warm

enough to touch. 3mL of propionic acid and 3mL of 99% ethanol were added, and the solidified food was stored at 4�C. The solidified
food was mixed with a small quantity of water to soften the consistency before being used to feed larvae.

Non-picture wing HawaiianDrosophila species pupariated on the side of the glass vials, and hatched F1 offspring were transferred

into new vials. Larvae of the picture wing subgroup species pupate in the soil. To accommodate this behavior, food vials with wan-

dering picture wing larvaewere placed in a large jar containing 1-2cmofmoist sand at the bottom. A piece of cloth or paper towel held

in place using a rubber bandwas used close the opening of each jar. Larvaemigrated from the vials to the sand to pupariate, and thus

adults emerged from the sand, and were aspirated out of the jar into a fresh adult food vial.

The effect of larval substrate on ovariole number in lab-reared and wild Hawaiian Drosophila

Evolutionary modeling analysis showed that ovariole number in Hawaiian Drosophila is best explained by evolutionary forces related

to egg-laying substrate. Specifically, the three-state model that we tested (OU3), which distinguishes between bark breeding, the

specialist substrates of Scaptomyza specialists, and other substrates, was the best fit for our ovariole number data across a majority

of trees for ovariole number (DAICc > 2 as compared to OU2 and OU8 models). The Brownian motion (BM), one-state model (OU1)

and two-state (OU2) model lacked support as compared to the OU3model (DAICc > 2). Along with strong support for the OU3model,

we obtained occasional support for the full eight state model (OU8) (Data S1). It is possible that the limited sample size for some sub-

strate categories in this model contributed to the poor fit of OU8 to our data. Further studies with deeper sampling to obtain increased
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representation of non-bark oviposition substrates will be needed clarify the extent to which finer distinctions between specific

specialist substrates may contribute to adaptive changes in ovariole number.

These results were largely unchanged when comparing models using an alternative topology generated from mtDNA sequences

(Data S1), with all analyses supporting a role for ecology in driving trait evolution. Since five out of the 66 species represented in the

analysis were categorized into species groups rather than a single species based on the DNA barcoding, we assigned two different

species IDs and ran the OU analysis to address whether group assignments had an impact on our analysis. Assigning IDs to closely

related species within the group did not alter the results (Data S1). Similarly, results were unchanged when only the data collected for

this study were considered, excluding data previously reported by Kambysellis and Heed [2] (Data S1).

Here we note some of the difficulties faced by researchers wishing to rigorously and thoroughly account for oviposition substrate in

these analyses. Species keys are not available for females of most non-PWHawaiianDrosophila species, and DNA barcode data that

were used to identify the species were not available for many samples that were collected. Since Haleakala species were difficult to

key, most samples from this group were excluded from the analysis. Further, presence of specific HawaiianDrosophila species in the

field can be unpredictable, and difficulty in encountering them during field work is increasingly compounded by the declining

numbers of endemic species in Hawai’i. For example, sap flux specialists have been documented to exist in the PW, MM, and

AMC groups [16], but we were only able to collect data from two PW sap flux breeders, one from the field (D. picticornis) and another

from a laboratory line (D. hawaiiensis). Lastly, certain egg-laying substrates are observed in very few species. For example, Titano-

cheta Scaptomyza species are spider-egg breeders, and this trait appears to have evolved only once [19, 55]. Despite these

challenges to taxon sampling, however, our analysis rejected the null model of Brownian evolution, and supported the hypothesis

that ovariole number evolves in response to changes in egg-laying substrate across Hawaiian Drosophila.

The effect of larval substrate on fecundity in lab-reared and wild Hawaiian Drosophila

While species-specific ovariole numbers clearly have a strong heritable component even in the absence of the native substrate

(Figure S1), the substrate does appear to provide chemical cues that are important to drive egg-laying behavior. In other words, sub-

strate components may contribute to reproductive output by inducing or facilitating oviposition, but not by determining ovariole num-

ber. We therefore speculate that evolution of host specialization may have resulted from or in changes in heritable mechanisms that

also, perhaps due to pleiotropy, determine ovariole number.

We note that other species of flies have also evolved differences in ovariole number when they shift between host substrates. For

example, in African drosophilids and tephritid Dacus flies, generalist species that oviposit on a variety of egg-laying substrates have

higher fecundity than specialists [9, 13, 29]. Moreover, specialist species of African and Central American Drosophila species are

more fit in the presence of host-specific compounds [14, 56–58], some of which are toxic to other species ofDrosophila. For example,

D. sechellia is best reared on lab media supplemented with Morinda fruit [14], while D. pachea cannot be reared in laboratory

conditions without supplementing media with sterols from its host cactus [59]. Egg-laying substrates for Hawaiian Drosophila

have divergent chemical cues and fungal populations [60]. Laboratory populations of Hawaiian Drosophila often require extracts

or pieces of egg laying substrates to stimulate oviposition, but can undergo development completely on laboratory food to give

rise to adults with similar ovariole numbers as wild-caught flies (see STAR Methods; Figure S1). We therefore speculate that specific

substrate components may not only allow females to distinguish between hosts for oviposition, but also may contribute to species-

and substrate-specific egg laying behavior in Hawaiian Drosophila.

The effect of larval substrate on body and egg size
In addition to ovariole number, we tested whether shifts in larval ecology influenced the evolution of body size and egg index (calcu-

lated as the phylogenetic residual of egg volume to thorax volume), as these traits are often correlated with ovariole number and have

been predicted to evolve in response to changes in ecology and reproductive strategy. For body size, we found that models that

accounted for ecological evolution did not fit the data better than a Brownian Motion model (BM, DAICc > 2). For egg index, models

that accounted for ecological evolution fit the data better than BM and OU1 (DAICc > 2), but we were unable to distinguish within

between models (DAICc < 2) (Table S6). These results suggest that the evolution of ovariole number, but not overall body size,

has been linked to changes in larval ecology within the Hawaiian radiation of Drosophila.

The relationship between ovariole number and egg size
One of the life history characteristics commonly observed in animals is the inverse relationship between high reproductive capacity

and investment into offspring [7]. Egg size is often considered a proxy for maternal investment in insects, and life history theory pre-

dicts a trade-off between maternal investment egg size and reproductive output, thereby predicting a negative correlation between

ovariole number and egg size [61]. Previous empirical studies have found evidence for this predicted inverse correlation between egg

size and ovariole number in some insects [14, 36].

We compared the evolutionary relationship between ovariole number and egg size across HawaiianDrosophila, accounting for the

relationship to body size in each variable using phylogenetic residuals [62]. We observed a significant negative correlation that

explained most of the variation in relative egg size (Figures 3C and 3D; Data S1). Specifically, we found that when controlling for

body size, species with more ovarioles have proportionally smaller eggs (Figures 3C and 3D; Data S1). This result suggests that

the allometric relationship between ovariole number and egg size is complex, and implies that there are constraints preventing

the evolution of both large eggs and high ovariole number.
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METHOD DETAILS

Measurement of adult phenotypes
Adult ovaries were dissected in 1X PBS, and placed in 2% paraformaldehyde in 1X PBS overnight at 4�C. Ovaries were then stained

with the nuclear dye Hoechst 33342 (Sigma, 1:500 of 10mg/ml stock solution) in 1X PBS for two hours at room temperature, then

washed with 1X PBS for a total of one hour. Ovaries were mounted on glass slides in Vectashield mounting medium (Vector

Labs), and ovarioles were spread apart using tungsten needles for species with high ovariole number. Adult ovariole number was

counted from both ovaries to obtain ovariole number per female under fluorescent and white light microscopy using a Zeiss AxioIm-

ager microscope. Images of eggs were taken from these slides using DIC white light settings. Egg volume was calculated when

mature eggs were laid by captive adult flies or when present in dissected ovaries. In these cases, egg volume was estimated by

measuring the straight lines across the longest and widest points of the egg, and assuming a prolate spheroid shape following a

previously published protocol [63] using ImageJ.

Adult bodies were placed in 99% ethanol after dissection for DNA extraction and adult size analysis. Lateral view images of the

thorax were captured using a Zeiss Lumar Stereomicroscope. The highest point of the anterior tip of the thorax and the posterior-

most point of the scutellum in the same image plane were used to measure thorax length. A straight line was drawn between these

two points in these images using ImageJ’s measure function. Thorax volume was calculated as thorax length (mm)3 as a proxy for

body size, and proportional egg volume was calculated by dividing egg volume by thorax volume. Raw data measurements for adult

traits are publicly available at https://github.com/shchurch/hawaiian_Drosophila_ovaries_2018.

Measurement of larval phenotypes
Wandering larvae or early pupal stage individuals were dissected in 1X PBS + 0.1% Triton-X and fixed in 4%Paraformaldehyde in 1X

PBS for 20 minutes at room temperature. Larval ovaries were stained as previously described [32] using mouse anti-Engrailed/

Invected (4D9, Developmental Studies Hybridoma Bank, 1:50), FITC-conjugated Phalloidin (Sigma, 1:120), and Hoechst 33342

(Sigma, 1:500 of 10mg/ml stock solution). Samples were post-fixed in 4% paraformaldehyde in 1X PBS for 15 minutes at room tem-

perature andmounted in Vectashield mounting medium (Vector Labs) for imaging using a Zeiss LSM780 Confocal Microscope at the

Harvard Biological Imaging Center. Quantification of TFCs and TFs was conducted as previously described [32]. Larval ovary TF and

TFC number measurements were obtained per ovary, unlike adult measurements, which were collected from both ovaries for

each female.

For some samples, fewer collected specimens could be used formeasuring total TF number than for others, as total TF number can

only be counted in larval ovaries where TF morphogenesis has completed, which is usually near the end of larval development (2). At

the time of larval ovary dissection, some ovaries contained completed TFs, while others were still undergoing morphogenesis and

could not be used to gather data on TF number. In the latter cases, TFC number per TF was measured for those TFs that had

completed morphogenesis, and total TFC number for that species was assigned based on the average TF number from other spec-

imens from the same species. Larval trait raw data measurements are publicly available at https://github.com/shchurch/

hawaiian_Drosophila_ovaries_2018.

Notes on analysis of larval ovarian development in Hawaiian Drosophila

Overall larval ovary morphology of Hawaiian Drosophila was similar to that of the melanogaster subgroup species (Figures 4D–4F),

with characteristic TFC stacks forming toward the end of larval development (white arrowhead, Figures 4D–4F). To determine

whether, as in D. melanogaster [32, 33, 38], ovariole number is established by the end of larval development and does not change

during the pupal phase, we compared total TF number in Hawaiian Drosophila ovaries that had completed TF morphogenesis to

adult ovariole number per ovary. We found a close to 1:1 correlation between TF number per ovary and ovariole number per ovary

(Table S5).

One notable difference was in S. caliginosa, which had one ovariole per ovary in our adult samples, and two TFs per ovary in the

developmental analysis. Given that Kambysellis and Heed [2] previously reported S. caliginosa females with more than two ovarioles,

our result may be due to the small sample size of adults ofS. caliginosa in our study (n = 5 versus n = 24 in the previous study), or to the

difficulty of counting ovarioles in this species. However, we note that honeybees can destroy ovarioles that are formed during larval

stages through programmed cell death during pupal development [64]. Thus, we cannot exclude the possibility that the difference

between larval TF number (two) and adult ovariole number (one) observed in S. caliginosamay be a result of a similar developmental

process as that reported in honeybees.

PCR amplification of mitochondrial genes for species identification
While there are detailed dichotomous keys for species identification of Hawaiian Drosophila [65], these keys focus on male-specific

traits including male genitalia and other sexually dimorphic characters. Therefore, we identified female flies using a combination of

morphological features [22, 66], collection site information, and DNA barcode-based methods as previously described [67].

Following ovary dissection, abdominal at tissue was used for DNA extraction using the QIAGEN Blood and Tissue kit. PCRs were

conducted using primer sets (from 50 to 30) as previously published and listed in the KRT [18].
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PCR was conducted using Dynazyme DNA polymerase (Thermo Scientific) as follows: 95�C 5 minutes, (95�C 30 s, 50�C (COI and

COII) or 54�C (16S) 30 s, 72�C 30 s) x 30, 72�C 5 minutes. PCR products were cleaned using ExoSAP-IT (Affymetrix) and sequenced

by Genewiz (Cambridge, MA). Sequences were analyzed using 4Peaks (Nucleobytes).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of mitochondrial sequences for species delineation
All sequences were first analyzed by BLASTn alignment against the NCBI Nr/Nt collection, and the accession numbers were noted

for those where there was one clear hit with 98%–100% sequence identity to one species (Table S2). Species that returned multi-

ple 99%–100% BLASTn hits are summarized in Table S3. We note that in many cases, multiple hits are within a closely related

species subgroup (Table S3), as reported in previous phylogenetic studies of Hawaiian Drosophila [18–21, 23, 68]. When BLAST re-

sults of all three barcodes were consistent, the sample was assigned a species identity. In cases where the BLAST analysis did not

provide a clear identity, we tested whether the sample was sister to a single reference species in gene trees constructed using

RAxML, as described below in ‘Phylogenetic Inference’. Samples with unambiguous BLAST and/or tree-based support were as-

signed a species identity. Some samples resulted in BLAST and tree-based support for a closely related species group; in these

cases, a species group identity was assigned instead of a specific species. Samples that did not have clear support for any species

group hit were discarded from the dataset. The published and original sequence data, resultant gene trees, and custom scripts used

for this analysis are available at https://github.com/shchurch/hawaiian_Drosophila_ovaries_2018, commit 5c70803, directory

‘sequence_data_methods’.

Taxon sampling in this and previous studies
All measurements were taken following methods from [2], and 15 species from that study were also included in our study. The ma-

jority of the overlapping data were within two standard deviations of the previous study (Table S1; > 3 standard deviations highlighted

in yellow), suggesting that these traits have remained stable over the last 40 years, such that our measurement methods are com-

parable to those of the previous study. We therefore included the data from Kambysellis and Heed [2] for subsequent analyses. Our

final dataset for analysis contains 35 newly characterized species, 15 species included in both our field-caught dataset and

Kambysellis and Heed [2], and 16 additional species discussed by Kambysellis and Heed [2] but not found by us in the field, yielding

a total of 66 Hawaiian Drosophila species across all major species groups that were used in the analysis herein (Figure 1).

Our taxon sampling for phylogenetic inference combines the efforts of four previous studies [18, 19, 21, 23] and additional newly

identified mitochondrial sequences (GenBank accession numbers MK276992 - MK277193). This sampling includes members of all

major lineages of Hawaiian drosophilids. Nucleotide sequences from each of these four studies were downloaded from GenBank,

totalling 18 genes. The sequence IDs were parsed using the program phyutility v2.2.6 [41], and the 18 genes were aligned individually

using MAFFT v7.130b [42] with the ‘‘auto’’ option selected, and trimmed with Gblocks v0.91b [43] with the ‘‘with half’’ option selec-

tion. Trimmed sequences were concatenated using phyutility into two alignments, one including all 18 available genes and one

including only the four mitochondrial genes. This second alignment reflects the analysis performed by O’Grady and colleagues

[18]. PartitionFinder v1.1.1_Mac [44]; options ‘raxml’) was used to find the best fitting model for each partition; GTR + G +I was found

for nearly all partitions. For species delineations, sequences of the three targeted genes generated in this study were combined with

homologous sequences from the four previous studies and aligned and trimmed using the same procedure as above. Gene trees

were generated in RAxML v8.2.3 [45] using a GTR + G +I model of sequence evolution).

Phylogenetic inference
Phylogenetic relationships and divergence time estimates were inferred simultaneously using both the mitochondrial and

mitochondrial+nuclear alignments in a Bayesian framework in BEAST v. 2.3.2 [46, 47]. A single calibration at the root (i.e., at the

base of Hawaiian Drosophila + Scaptomyza) was used to infer divergence times; this was assigned a uniform prior from 23.9–37.1

Ma, following [23]. Rate-smoothing was performed using a relaxed lognormal clock model [69]. The BEAST analyses followed the

same partitioning scheme as RAxML, as determined by PartitionFinder [44] and utilized a birth-death tree prior. Four separate chains

were allowed to run for 100million generations (sampling every 10,000) using the CIPRES supercomputer cluster (https://www.phylo.

org). Convergence was assessed using the AWTY web interface [48] and effective sample size (ESS) values of the runs (using values

> 200 as a cutoff) in Tracer [49]. After convergence was reached, the individual runs were combined and the maximum clade

credibility tree, including credibility intervals (CI) for ages and posterior probabilities (PP) for node support, was assembled in

TreeAnnotator [50]. Upstream phylogenetic comparative analyses used either the maximum clade credibility (MCC) tree or

a subset of 500 trees from the posterior distribution of trees, as appropriate; analyses were repeated for each of the two BEAST

analyses. The final alignments, mcc trees, and posterior distributions are available at https://github.com/shchurch/

hawaiian_Drosophila_ovaries_2018, commit 5c70803, directory ‘sequence_data_methods’.

Phylogenetic relationships between Hawaiian Drosophila in this study
Our study focuses on the Hawaiian clade Drosophilidae, which comprises an estimated 1000 species in two genera, Drosophila and

Scaptomyza. The phylogeny of this clade and its substituent subclades has been the focus of many recent studies [18–21, 23, 68].

The monophyly of Hawaiian drosophilids is well-supported, as is the monophyly of Scaptomyza and Hawaiian Drosophila within
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them. The relationships between and within the subgroups of HawaiianDrosophila (Scaptomyza, PW,MM, Haleakala, and AMC spe-

cies groups) remain less resolved. Specifically, the monophyly of each of these individual groups is generally well-supported (but see

the moderate support values for the MM group reported in [21] and [18]), but the relationships between these large groups are in

conflict across studies.

To generate a phylogenetic tree for evolutionary modeling analysis, we compiled data from published phylogenetic studies and

captured the two topologies of Hawaiian Drosophila species groups that have been published to date. The consensus tree topology

that we recovered matched the topology recovered in recently published phylogenetic analyses [18, 21], and the second most

common basal topology matched the alternative topology presented in [21]. Our phylogenetic analysis also captured monophyletic

species subgroups in AMC, PW and Scaptomyza [19, 21, 23]. Given that species relationships at the species group and subgroup

level were recovered in the phylogenies used for phylogenetic comparative methods analysis, we believe our analysis represents an

accurate estimate of our current knowledge of Hawaiian Drosophila phylogeny.

Phylogenetic Generalized Least-squares Analyses
All phylogenetic comparative analyses and corresponding figures were computed in R version 3.2.0 [51]. The evolutionary relation-

ship between ovariole number, egg volume, egg volume over thorax volume, and thorax volume was analyzed in pairs using phylo-

genetic generalized least-squares in nlme v.3.1-121 [28], using the phylogenetic correlation matrix generated using the corMartins

function in ape v.3.3 [52, 53] with a small starting alpha value. All traits were natural log transformed prior to analysis. Pairwise com-

parisons were performed over 100 trees randomly drawn from the posterior distribution generated in BEAST. The range and average

of both the p value and the slope from the PGLSmodels across the 100 treeswere calculated, and a cutoff threshold of 0.05 was used

to determine significance of the p values.

Analysis of Evolutionary Regimes
We used all reported ecological information about Hawaiian Drosophila as summarized by Magnacca and colleagues [16] to code

oviposition site for the species in our dataset. Three different coding schemes were compared: (1) OU8, which considered eight

ecological substrates (bark, flower, fruit, fungus, generalist, leaf, sap and spider egg breeders); (2) OU3, which considered three

states (bark, flower & spider egg, and ‘other substrate’ breeders); and (3) a final one with two states (OU2: bark and non-bark

breeders). We categorized species as bark breeders if they utilized the tree stem or trunk, though previous studies distinguished be-

tween the two [3, 4]. Ancestral states for each of these character codings were calculated over 100 trees randomly drawn from the

posterior distribution of trees generated with BEAST. The most likely ecological state was mapped at each node using the rayDISC

function in the R package corHMM, v.1.18 [25], and the resulting tree was pruned to include only tips with ovariole number data.

The fit of three models of trait evolution were assessed on pruned trees using the R package OUwie v.1.48 [25]. The three models

tested were Brownian Motion (BM1), Ornstein-Uhlenbeck with a single optimum for all species (OU1), and Ornstein-Uhlenbeck with

optima for each ecological state (OUM; OUM was fit for eight, three and two state models for each of the distinct character codings,

respectively OU8, OU3, and OU2 as described above). Corrected Akaike Information Criterion (AICc) values were compared for each

of these models for each of the trait coding schemes, where the best-fit model (i.e., the model with the lowest delta AICc score) was

moderately supported when other models had delta AICc of 2-10, and strongly supported when delta AICc > 10. This analysis was

repeated over each of the 100 trees, and the frequency of each best-fitting model was recorded. Optimized theta values for each of

the three OUM analyses were untransformed and recorded (Data S1).

DATA AND SOFTWARE AVAILABILITY

All of the commands and data used to perform phylogenetic comparative analyses, as well as the corresponding commands to

generate the figures, are available in the public repository https://github.com/shchurch/hawaiian_Drosophila_ovaries_2018, commit

5c70803.
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Figure S1. Comparison of mean ovariole number of wild caught females and their F1 offspring reared in the laboratory; Related to 
Figure 1. Box plot of ovariole number from wild-caught females and their F1 offspring reared in the same laboratory condition for each species. 
Species name is indicated along with the species group (Scaptomyza, PW for picture wing and MM for modified mouthpart) and oviposition 
substrate. Ovariole number is not significantly different between wild-caught females and F1 females for any species, regardless of oviposition 
substrate, natural or laboratory diet. Sample size (number of adults) is indicated below the plot.  



 

 

 
Table S4. Summary of Phylogenetic Generalized Least Squares (PGLS) analyses. Related to Figure 3. (Part 1) PGLS analyses of adult 
reproductive traits in Hawaiian Drosophila. PGLS analysis of relationships between ovariole number and thorax volume (mm3), egg volume 
(μm3) and thorax volume, and ovariole number and proportional egg volume (μm3/mm3) are listed. Regression analyses were performed with 
the R package nlme v.3.1-121 [S1] on 100 trees from a BEAST posterior distribution using nuclear and mitochondrial genes, and the minimum, 
average, and maximum slope and p-value for the analysis is included in the table. P-values below 0.01 are in bold.(Part 2) PGLS analyses on 
nuclear and mitochondrial or mitochondrial gene only BEAST trees. Relationships between ovariole number and thorax volume, ovariole 
number (ON) and egg volume, egg volume and thorax volume, and ovariole number and thorax/egg proportion are listed for regression 
analyses that were conducted across 100 trees from a BEAST posterior distribution using nuclear and mitochondrial genes or mitochondrial 
genes only. “Combined data” includes present data and Kambysellis and Heed [S2]. “Present data” indicates analyses conducted using data 
collected from this study alone. Minimum, average, and maximum slope and p-value for the analysis is included in the table. P-values below 
0.01 are indicated in bold.  

PART 1
min avg max min avg max min avg max min avg max min avg max

ON - Thorax volume (mm3) Slope 0.234 0.292 0.500 0.412 0.416 0.424 0.014 0.019 0.020 0.572 0.598 0.627 -0.307 -0.284 -0.276
p-value 0.000 0.002 0.011 0.000 0.000 0.000 0.841 0.845 0.892 0.001 0.004 0.008 0.134 0.150 0.174

Egg vol (um3) - Thorax volume (mm3) Slope 0.156 0.353 0.407 0.164 0.185 0.164 0.745 0.748 0.760 -0.038 -0.038 -0.037 0.654 0.679 0.680
p-value 0.000 0.000 0.058 0.086 0.109 0.164 0.000 0.000 0.000 0.811 0.811 0.811 0.012 0.012 0.016

ON - Proportional Egg volume (um3/mm3) Slope -0.649 -0.570 -0.532 -0.453 -0.445 -0.438 -0.321 -0.321 -0.314 -0.686 -0.659 -0.648 -0.570 -0.473 -0.367
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.008 0.010 0.000 0.001 0.001 0.084 0.170 0.306

ON - Egg volume (um3) Slope -0.703 -0.42 -0.376 -0.088 -0.081 -0.07 -0.308 -0.222 -0.161 -0.69 -0.689 -0.689 -0.784 -0.676 -0.567
p-value 0.000 0.000 0.000 0.674 0.695 0.739 0.008 0.049 0.127 0.396 0.396 0.397 0.001 0.003 0.007

PART 2

min avg max min avg max min avg max min avg max
ON - Thorax volume (mm3) Slope 0.218 0.274 0.371 0.22 0.291 0.393 0.218 0.274 0.371 0.257 0.321 0.388

p-value <0.000 0.004 0.017 <0.000 0.01 0.04 <0.000 0.004 0.017 <0.000 0.004 0.017
Egg vol (um3) - Thorax volume (mm3) Slope 0.285 0.371 0.426 0.153 0.201 0.255 0.285 0.371 0.426 0.124 0.199 0.276

p-value <0.000 <0.000 0.003 0.021 0.054 0.102 <0.000 <0.000 0.003 0.017 0.072 0.212
ON - Egg/Thorax volume Slope -0.612 -0.583 -0.554 -0.566 -0.564 -0.562 -0.611 -0.583 -0.554 -0.57 -0.57 -0.568

p-value <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000
ON - Egg volume Slope -0.418 -0.383 -0.344 -0.528 -0.48 -0.427 -0.418 -0.383 -0.344 -0.51 -0.425 -0.349

p-value <0.000 <0.000 0.001 <0.000 <0.000 0.001 <0.000 <0.000 0.001 <0.000 0.002 0.01

mtDNA
Combined data Present dataCombined data Present data

nc + mtDNA

All species groups Picture wing spp. AMC spp. Mod. mouthpart spp. Scaptomyza spp.



 

 
 
Table S5. Summary of TF number, TFC number per TF, and total TFC number from Hawaiian Drosophila larval ovaries; Related to 
Figure 4. TF number and total TFC number are per larval ovary, comparison of TF number observed per developing ovary compared to 
average ovariole number (ON) per ovary, and the ratio of TF number to ovariole number for various species. Sample size (n) and standard 
deviation (sd) is indicated for each species. 
  

Species ID Spp. group Substrate TF # sd n
Adult ON 
per ovary n

TF:ON 
Ratio

TFC # 
per TF sd Total TFC # sd n

D. basimacula AMC Leaf 7.00 ± 0.53 8 6.24 21 1.12 8.96 ± 1.19 62.59 ± 8.41 8

D. tanythrix AMC Leaf 5.75 ± 0.96 4 5.79 7 0.99 10.55 ± 0.86 61.03 ± 13.65 3

D. mimica MM Fruit 11.00 ± 1.41 2 11.62 13 0.95 7.50 ± 0.14 106.90 ± 43.70 2

D. mitchelli MM Unknown 11.50 ± 0.71 2 11.20 3 1.03 7.80 ± 0.57 89.50 ± 0.99 2

D. grimshawi PW Bark 25.25 ± 3.96 5 23.90 8 1.06 9.58 ± 1.39 193.47 ± 57.89 8

D. hawaiiensis PW Sap flux 17.67 ± 2.08 3 18.64 7 0.95 9.47 ± 1.04 167.97 ± 33.86 3

D. picticornis PW Sap flux 13.00 ± 2.83 2 12.63 12 1.03 11.18 ± 1.23 144.84 ± 17.48 9

D. setosimentum PW Bark 19.00 ± 2.82 2 20.60 4 0.92 9.87 ± 0.15 186.90 ± 20.63 3

D. silvestris PW Bark 18.00 ± 0.00 1 24.50 2 0.73 12.00 ± 2.68 216.00 ± 48.37 2

D. villocipedis PW Bark 29.00 ± 1.26 4 20.70 5 1.40 10.02 ± 0.43 218.01 ± 14.92 6

Bunostoma spp Scaptomyza Unknown 6.00 ± 0.00 2 6.50 10 0.92 9.40 ± 1.56 56.50 ± 9.19 2

S. caliginosa Scaptomyza Flower 2.00 ± 0.00 2 1.00 5 2.00 7.75 ± 0.35 15.50 ± 0.71 2

Average TF:ON R 1.092



 

 
 
Table S6. Phylogenetic Generalized Least Squares (PGLS) analysis of larval ovarian 
measurements in Hawaiian Drosophila; Related to Figure 4. Relationships between TF 
number and TFC number per TF, TF number and total TFC number, and total TFC number 
and TFC number per TF are listed. Regression analyses were performed with the R 
package nlme v.3.1-121 [S1] on 100 trees from a BEAST posterior distribution using nuclear 
and mitochondrial genes, and the minimum, average, and maximum slope and p-value for 
the analysis is included in the table. P-values below 0.01 are indicated in bold. 
 

 
 
 

 

min avg max
TF # - TFC # per TF Slope 0.320 0.744 1.728

p-value 0.199 0.376 0.647
TF # - Total TFC # Slope 0.873 0.873 0.873

p-value 0.000 0.000 0.000
TFC # per TF - Total TFC # Slope 0.097 0.097 0.097

p-value 0.059 0.059 0.059
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