
Chapter 8
The Cricket Gryllus bimaculatus:
Techniques for Quantitative and Functional
Genetic Analyses of Cricket Biology

Arpita Kulkarni and Cassandra G. Extavour

Abstract All extant species are an outcome of nature’s “experiments” during
evolution, and hence multiple species need to be studied and compared to gain a
thorough understanding of evolutionary processes. The field of evolutionary devel-
opmental biology (evo-devo) aspires to expand the number of species studied,
because most functional genetic studies in animals have been limited to a small
number of “traditional”model organisms, many of which belong to the same phylum
(Chordata). The phylum Arthropoda, and particularly its component class Insecta,
possesses many important characteristics that are considered favorable and attractive
for evo-devo research, including an astonishing diversity of extant species and a
wide disparity in body plans. The development of the most thoroughly investigated
insect genetic model system to date, the fruit fly Drosophila melanogaster
(a holometabolous insect), appears highly derived with respect to other insects and
indeed with respect to most arthropods. In comparison, crickets (a basally branching
hemimetabolous insect lineage compared to the Holometabola) are thought to
embody many developmental features that make them more representative of
insects. Here we focus on crickets as emerging models to study problems in a
wide range of biological areas and summarize the currently available molecular,
genomic, forward and reverse genetic, imaging and computational tool kit that has
been established or adapted for cricket research. With an emphasis on the cricket
species Gryllus bimaculatus, we highlight recent efforts made by the scientific
community in establishing this species as a laboratory model for cellular biology
and developmental genetics. This broad toolkit has the potential to accelerate many
traditional areas of cricket research, including studies of adaptation, evolution,
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neuroethology, physiology, endocrinology, regeneration, and reproductive behavior.
It may also help to establish newer areas, for example, the use of crickets as animal
infection model systems and human food sources.

8.1 Introduction

All cellular life forms share a last common ancestor. Every extant species is a current
outcome of an evolutionary process that has taken place over hundreds of millions of
years. Thus, each species that exists today can be used as a data point toward
increasing our understanding of the living world. Comparative study of the devel-
opmental biology of multicellular organisms motivates the field of evolutionary
developmental biology, or “evo-devo.” However, to date only a relatively small
number of species has been used to study the functions of genes that regulate
animal developmental processes, which limits our understanding of how develop-
mental genetic changes underpin evolution. If the idealized goal of evo-devo
research is to do a species comparison that includes representatives of all major
evolutionary transitions, then this calls for the establishment of many more animals
as laboratory model organisms than is currently the case. As a step in this direction,
developmental biologists are increasingly choosing new animal models that are
suitable to address thus far neglected areas of research, while simultaneously
selecting these candidates for their ability to fulfill other criteria relevant for
evo-devo work. Some criteria that could maximize the scientific gains achieved by
establishing new models include choosing organisms that belong to clades that are
representative of a wide range of ecological niches, and those belonging to phyla that
are species-rich, display high diversity in form and function, have interdisciplinary
scientific appeal, are economical to maintain in the laboratory, and could inform
issues that directly affect humans (e.g., disease or agriculture). Strategically choos-
ing and studying examples satisfying some or all of these criteria may therefore be
impactful, evolutionarily informative, and a good use of limited resources.

The phylum Arthropoda contains multiple species that satisfy many of the above
criteria and has thus played a prominent role in modern evo-devo research. Impor-
tantly, good fossil records exist for this phylum, providing researchers with snap-
shots into the evolutionary past and aiding in comparative work. For example, the
EDNA fossil insect database lists over 23,000 species (Giribet and Edgecombe
2013; Mitchell 2013), with the earliest records of arthropod fossils dating back to
nearly 555 million years ago (Mya) during the Cambrian era (Harvey et al. 2012;
Zhang et al. 2010; Vaccari et al. 2004). Undoubtedly, access to such fossil records is
essential to understanding the key phenotypic innovations that have made
Arthropoda species-rich and evolutionarily successful (Mayhew 2007).

Extensive studies on insects, which account for the majority of all species
described on earth (Wheeler 1990; Grimaldi and Engel 2005) and for ~85% of all
arthropod diversity (Giribet and Edgecombe 2013), have pioneered and shaped the
evo-devo field. This work has informed us of the genetic and evolutionary basis of
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pivotal developmental mechanisms. For example, the description of the first home-
otic mutant (Bridges and Morgan 1923), and the realization of the significance of
conserved developmental genes in body patterning and in the evolution of different
body plans across animals, come from studies in the insectDrosophila melanogaster
(Lewis 1978; Nüsslein-Volhard and Wieschaus 1980; Duboule and Dolle 1989;
Graham et al. 1989; Panganiban et al. 1997; Heffer et al. 2013). Other insect-based
research that has broadened our understanding of evolutionary processes includes
work on key evolutionary innovations such as the insect body plan (Grimaldi and
Engel 2005), metamorphosis (Truman and Riddiford 1999), development of wings
(Nicholson et al. 2014; Alexander 2018; Bruce and Patel 2018; Linz and Tomoyasu
2018), morphological novelties (Kijimoto et al. 2013), and insect eusociality (Toth
and Rehan 2017). The widespread scope of such research is a result of the practical
advantages that come with working on insects: insect phylogeny is well established
(Giribet and Edgecombe 2013), many species are easy to maintain and culture in the
laboratory, are often amenable to functional genetic analysis, in many instances
produce easily accessible large broods suitable for external manipulation, and often
have life cycles sufficiently short to allow laboratory rearing and multigenerational
analysis.

To date, popular insect models to study the genetic basis of development have
included the fruit fly Drosophila melanogaster (Diptera) (Demerec 1950), the flour
beetle Tribolium castaneum (Coleoptera) (Sokoloff 1966, 1972, 1974, 1977; Denell
2008), the honeybee Apis mellifera (Hymenoptera) (Gould and Grould 1995;
Oldroyd and Thompson 2006), the wasp Nasonia vitripennis (Hymenoptera)
(Werren and Loehlin 2009), and the silk moth Bombyx mori (Lepidoptera) (Xia
et al. 2004; Goldsmith et al. 2005; Meng et al. 2017). All of these insects, however,
share a commonality: they belong to the same insect superorder of Holometabola, or
insects that undergo complete metamorphosis during development. Complete meta-
morphosis is characterized by a pupal stage in the transition from larvae to adults,
with neither the larval nor the pupal stages resembling the final adult form (Truman
and Riddiford 1999). Such insects display a number of evolutionarily derived
developmental characters that are not generally representative of all insects, let alone
all arthropods (Mito and Noji 2008). To correct the overrepresentation of holome-
tabolous insects in modern comparative developmental literature, insects branching
basally to the Holometabola should be studied, as they, based on parsimony, appear
to display characters that are likely ancestral to insects and in some cases also to
arthropods. These insects are the Hemimetabola, insects displaying incomplete
metamorphosis and lacking pupal stages during development. The embryo in such
insects develops into a miniature adult (referred to as a nymph or a juvenile) which
then undergoes several successive molts before reaching adulthood and sexual
maturity. Orthopterans (crickets, grasshoppers, and locusts), one of the most abun-
dant and dominant terrestrial insect groups, are in this category (Grimaldi and Engel
2005). Orthopterans display extraordinary diversity in developmental processes and
are also economically important herbivores, which has resulted in them becoming
popular for functional genetic research in recent years.
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For the rest of this chapter, we focus on crickets as promising evo-devo models,
deserving of serious regard. We discuss Gryllus bimaculatus, a field cricket species,
introduce this model system, and discuss recent advances in establishing this animal
for cell, developmental, and genetic research.

8.2 A Hemimetabolous Insect Model: The Cricket Gryllus
bimaculatus De Geer

G. bimaculatus is a cosmopolitan orthopteran belonging to the family Gryllidae and
is, to our knowledge, the most widespread of all Gryllus species for laboratory
studies (Otte and Cade 1984). Although its use for developmental genetics is
relatively recent, this species is by no means new to biological research:
G. bimaculatus has been extensively used to inform areas such as neurobiology,
insect physiology, reproduction, and behavior since the 1960s (Huber et al. 1989;
Engel and Hoy 1999; Paydar et al. 1999; Wenzel and Hedwig 1999; Hedwig and
Poulet 2004; Nakamura et al. 2008a, b; Horch et al. 2017b). The discovery of RNA
interference (RNAi) as a mechanism for abrogating gene function (reviewed by Sen
and Blau 2006) has greatly accelerated G. bimaculatus research (Mito et al. 2011),
yielding important information about the developmental biology of this organism
and unveiling its potential as an upcoming functional genetics laboratory model.

This species was first described by Baron Charles de Geer in 1773 (Geer 1773)
and named Gryllus (meaning “cricket” in Latin) bimaculatus (from the Latin “mac-
ula” for “spot”). Indeed, this species is commonly referred to as the “two spotted
field cricket,” for the white spot that this species displays on the dorsal surface of the
forewings next to the pronotal margin (Fig. 8.1a) (Otte and Cade 1984). Some of the
morphological keys used to distinguish adult G. bimaculatus from other similar
looking field cricket species, both within and outside the genus Gryllus (Otte and
Cade 1984), include the white spots, a black colored adult body size of ~30 mm
lacking any bands, forewings nearly covering and large hindwings extending well
beyond the abdomen, and an ovipositor (in females) slightly longer than the hind
femora (Fig. 8.1a). As an additional tool in the field, entomologists have documented
that G. bimaculatus does not undergo an obligatory or facultative winter diapause
(i.e., developmental arrest in response to adverse environmental conditions such as
temperature and/or photoperiod), at any stage of its life cycle (Bigelow 1962). Such a
lifestyle is called a homodynamic life cycle, and is in contrast to the heterodynamic
lifestyle observed in many other Gryllus species entering diapause. Examples of
overwintering species in this genus include G. pennsylvanicus, G. campestris,
G. fultoni, G. veletis, G. vernalis, and G. firmus (Bigelow 1962). This means that
it is possible to collectG. bimaculatus in the field across seasons and makes it easy to
culture and breed this species in the laboratory all year-round. Additionally, in the
field, G. bimaculatus is often found close to human settlements, on the ground
surface or in soil cracks (Otte and Cade 1984).
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While one could collect this species from the wild, the easiest way to establish a
laboratory culture of G. bimaculatus is from animal pet suppliers. Multiple online
pet suppliers based in various countries (e.g., Pets at Home, UK; Bugs International,
Germany) culture and distribute this species as live crickets for captivity feeding. It
is important to note, however, that at the time of writing, the United States is an
exception: the United States Department of Agriculture (USDA) does not permit
commercial distribution of G. bimaculatus in the United States, and the cricket spe-
cies commonly commercially available for purchase are Gryllodes sigillatus and
Acheta domesticus (examples of online retailers selling cricket species in the United
States at the time of writing include Ghann’s Crickets, Top Hat Cricket Farm,
Fluker’s Cricket Farm, and Premium Crickets). Being bulkier and meatier than
other cricket species (Fig. 8.1b dorsal and lateral view), G. bimaculatus is

Fig. 8.1 G. bimaculatus morphology. (a) G. bimaculatus adult female (left), adult male (center),
and male nymph (right) displaying some morphological keys used to identify this species. The
characteristic white spots (marked with white asterisks on the adult female and male) on the
forewings next to the pronotal margin are shown. Animals are black in color and are therefore
vernacularly also known as the “black cricket” in some parts of the world. The body (in both sexes)
lacks any bands of contrasting pigmentation; forewings nearly cover the abdomen, and hindwings
extend well beyond the abdomen; females possess an ovipositor (marked with pink asterisk), used
to deposit eggs. The presence or absence of an ovipositor can be used to sex animals in nymphal
stages (developmental stages prior to becoming an adult). Note: The adult female and male
photographed in this picture have broken left antennae; normally both antennae are of similar
lengths. Scale bar is 1.5 cm. (b) Comparison (dorsal and lateral view) between an adult G. assimilis
(unmarked) and G. bimaculatus female (marked with white asterisk). Note the brown body color,
leaner and less bulky adult body, and the absence of the white spots on the forewings inG. assimilis.
(c) A lateral view of an adult G. bimaculatus male white-eye mutant and (d) higher magnification
images of the cricket head (front view) showing the white eye color in these mutants (left) compared
to wild-type pigmented eyes shown in (e) (right)
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preferentially exploited in multiple countries as an inexpensive food source for
humans (described below, Sect. 8.8) and for insectivorous animals housed in
captivity (Mito and Noji 2008). This has significantly raised their potential economic
importance in recent years. Because G. bimaculatus is quite heat tolerant and one of
the very few insects that can be reared at 37 �C (human body temperature), this
species is also promising as a simple animal infection model system and has found
application in studying human pathogenic bacteria (e.g., Staphylococcus aureus,
Pseudomonas aeruginosa, and Listeria monocytogenes) (Kochi et al. 2016) and
fungi including various Candida species (Kochi et al. 2017). Epizootic viral diseases
are devastating in crickets (and for cricket-rearing facilities), wiping out entire
colonies and becoming difficult to eradicate. Researchers who wish to culture
G. bimaculatus, therefore, should be aware that this species is susceptible to the
G. bimaculatus nudivirus (GbNV), known to infect nymphs and adults (Wang and
Jehle 2009) and the cricket iridovirus (CrIV) (Kleespies et al. 1999), but is reportedly
resistant to the cricket paralysis virus (CrPV) and the potent A. domesticus
densovirus (AdDNV) (Szelei et al. 2011).

As a hemimetabolous insect, G. bimaculatus displays a short germ band during
embryonic development and thus differs substantially from the well-studied long
germ band characteristic of Drosophila. Short germ band development refers to a
form of insect body patterning that is thought to be ancestral to arthropods (reviewed
by Davis and Patel 2002) and present in many extant insects including crickets. In
this form of development, only the anterior body segments (head only or the head
and thorax) are specified in the early embryonic rudiment before gastrulation,
whereas posterior segments (the thorax or the thorax and abdomen) are formed
sequentially later in development during a secondary growth phase (reviewed by
Krause 1939; Davis and Patel 2002; Liu and Kaufman 2005). In contrast, insects
such as Drosophila follow the presumed derived long germ band type of develop-
ment, whereby all segments are specified near simultaneously during the early
blastoderm stage (Krause 1939; Campos-Ortega and Hartenstein 1985; Lohs-
Schardin et al. 1979; Liu and Kaufman 2005). Another way in which crickets may
display putative ancestral insect characteristics is in the structure of its ovaries. The
G. bimaculatus ovary is panoistic, meaning that there are no germ-line-derived nurse
cells that provide cytoplasmic content to growing oocytes (Büning 1994). Instead,
every germ-line cell (i.e., every cystoblast) in the adult female ovary is thought to
give rise to an oocyte (Büning 1994). In contrast, in the meriostic type of ovaries, as
seen in Drosophila and nearly all other holometabolous insects (for details see
Bilinski et al. 2017), the oocytes are connected to groups of germ-line cells called
nurse cells. Panoistic ovary type and short germ development are, based on parsi-
mony, thought to be features ancestral to insects and possibly to Pancrustacea.
Consequently, it has been proposed that this species has the potential to serve as a
representative study model for basally branching, hemimetabolous insect and arthro-
pod lineages (Sander 1997; Mito and Noji 2008).

Sex determination inG. bimaculatus is thought to follow the XX/X0 system, with
females being the homogametic sex and having a chromosome complement of
2n ¼ 28 + XX (Yoshimura 2005) and having a predicted genome size of a
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few gigabases (Mito and Noji 2008). G. bimaculatus is polyandrous—females are
known to mate with several males and exert postcopulatory mate choice (Tregenza
and Wedell 1998). This polyandry is associated with increased egg-hatching rates
and is hypothesized to prevent effects of inbreeding in wild populations (Simmons
1986, 1987; Tregenza and Wedell 1998, 2002; Bretman and Tregenza 2005).
Indeed, G. bimaculatus females can lay many hundreds or thousands of eggs over
their lifetime in the lab and, in our hands, have been maintained successfully as an
inbred line (originally founded from a few dozen individuals) for over a decade,
without any noticeable decline in health that might be attributed to inbreeding
depression (Extavour lab, unpublished observations).

8.3 Cricket Sources, Animal Husbandry, Life Cycle,
and Available Strains

At the time of writing and to the best of our knowledge (as described above), most
current working laboratory cultures of G. bimaculatus were either established from
adults purchased from commercial vendors (e.g., Tsukiyono Farm, Gunma, Japan;
Scope Reptile Pet Store, Okayama, Japan; Livefood UK Ltd., UK; Kreca Ento-Feed
BV, the Netherlands) or caught in the wild. However, this genus contains many
species that are morphologically very similar, many species are known to overlap
with G. bimaculatus in their local distribution, and adequate species-level, promi-
nent morphological keys are lacking within this genus. Although some keys have
been described (e.g., Nickle and Walker 1974), including the morphological char-
acters described above, to an inexperienced eye, many of these features are often
distinguishable only in comparison with another species present, or are easier to
observe in preserved specimens than in live animals. We thus recommend
performing molecular barcoding (e.g., using 16s ribosomal DNA or the cytochrome
b mitochondrial DNA sequence) of the founding adults of a new colony, whether
purchased commercially or captured in the wild, to ensure that all founding adults
are indeed G. bimaculatus (Ferreira and Ferguson 2010).

Rearing G. bimaculatus is straightforward, and detailed cricket husbandry pro-
tocols are well described for this species (Mito and Noji 2008; Kainz et al. 2011;
Kochi et al. 2016). Crickets (nymphs and adults) can be kept as inbred lines at
26–30 �C in well-ventilated plastic cages with egg cartons (Fig. 8.2a) or crumpled
paper for shelter, and can be maintained on either a 12 h light/12 h dark (Kainz et al.
2011) or a 10 h day/14 h dark photoperiod (Mito and Noji 2008). They can be fed on
general insect food or artificial insect diets (e.g., Oriental Yeast Co., Ltd., Tokyo,
Japan), artificial fish food, finely ground dry cat food (e.g., Purina Kitten Chow), a
mixture of oils and whole grain cereals (Kainz et al. 2011), or a combination of these
food sources (Fig. 8.2b). Cricket Quencher water gel (Fluker Farms) can be used as a
water source. Alternatively, a 50 mL falcon tube filled with water and stopped with
cotton, or wet tissue or cotton in petri dishes, can also serve as water sources
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(Fig. 8.2b). Crickets will oviposit fertilized eggs into damp sand (e.g., Sandtastik
Sparkling White Play Sand, Product Code PLA0050), wet paper towels, Whatman
paper, or wet cotton placed in petri plates in cricket cages (Fig. 8.2b inset, d). These
eggs will develop successfully and hatch in 12–14 days (Fig. 8.2c) under the
following conditions: incubation at ~28–29 �C with 70% humidity, dead or moldy

Fig. 8.2 G. bimaculatus husbandry. (a) (side view) and (b) (top view) showing a well-ventilated
plastic container used for housing a cricket colony. Note the use of egg cartons for providing shelter,
ground cat food, and a 50 ml Falcon filled with water and stopped with cotton as a food and water
source, respectively. A wet cotton plate (seen in a, b, and b inset) is placed in the adult cages for
females to oviposit fertilized eggs. Oviposited eggs (higher magnification shown in (d)) need to be
kept moist and clean until the eggs hatch. (c) A close-up of a cotton plate showing newly emerged
cricket hatchlings, which can then be transferred into new plastic cages with food, water, and shelter
until they reach adulthood. (e) Two G. bimaculatus eggs (6 days after egg laying) imaged under
bright field white light (top) and green florescent light (bottom). Both eggs are progeny obtained
from a cross between the histone2B-GFP (H2B-GFP) transgenic and wild-type G. bimaculatus line.
Embryos carrying the H2B-GFP transgene (bottom egg marked with white asterisk) can be
distinguished from non-transgenic embryos (top egg) based on the presence of bright florescent
nuclei, which is detectable from day 5 until day 10 after egg laying
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embryo removal on a regular basis, and maintenance of a moist and clean substrate
(Mito and Noji 2008; Donoughe and Extavour 2016). Embryonic development for
this species has been divided into 16 stages based on morphological features of
eggs, developing embryos and their appendages (Niwa et al. 1997; Donoughe and
Extavour 2016). After hatching, nymphs undergo eight nymphal molts to finally
become adults over the next 5 weeks. The generation time (total time to adulthood
and sexual maturity) of G. bimaculatus is thus approximately 7 weeks at 29 �C
(Fig. 8.3). Adults are thought to reach maximum fecundity 1 week after the final
molt (Mito and Noji 2008). Sexing and identification of virgin males and females are
straightforward: late-stage male and female nymphs can be separated based on the
presence or absence of an ovipositor and then isolated until they undergo the final
molt to sexual maturity (Fig. 8.1a). This also helps in setting up single mating
crosses, for example, to establish genetically modified lines. Similarly, precisely
timed egg collections are possible by placing egg collection petri dishes in the cages
and removing them at desired intervals (described in Donoughe and Extavour 2016).

Fig. 8.3 A schematic showing an overview of the G. bimaculatus life cycle. Selected embryonic
and nymphal developmental stages are shown, alongside the duration of each developmental stage
depicted in hours (orange arc and lines), days (green arc and lines), or weeks (blue arc and lines)
after egg laying. The colored arcs indicate the entire duration of time occupied by the indicated
developmental stage, whereas the lines show a cartoon schematic of the selected stages within this
time window. Each displayed embryonic stage during embryogenesis shows the position of the
embryo (in gray) relative to the yolk (yellow) within the egg and has a small description of features
that are characteristic of that developmental stage (depicted as egg stage “EgS”). Dotted lines with
arrowheads indicate the different movements that the embryo makes during the course of develop-
ment in this species. Upon hatching, nymphs undergo eight nymphal molts (indicated by solid black
arrows) to reach adulthood. Newly emerged adult animals are sexually mature at molting and begin
mating soon after. This figure is modified from Donoughe and Extavour (2016)
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A G. bimaculatus spontaneous mutant strain with white eyes (Fig. 8.1c–e) was
isolated by Isao Nakatani and colleagues at the University of Yamagata, Japan, in
1989 (referenced in Mito and Noji 2008). This is, to our knowledge, currently the
only available mutant, and its phenotype is caused by an autosomal recessive
mutation, referred to as gwhite (Niwa et al. 1997; Mito and Noji 2008). This mutant
is sometimes preferred for whole-mount gene expression analysis at late stages of
embryogenesis, owing to the fact that at this stage, the tissues are more transparent
compared to wild type (Niwa et al. 1997; Mito and Noji 2008).

8.4 Techniques for Quantitative and Functional Genetic
Analyses in G. bimaculatus

Here we discuss protocols and methodologies that have been established and are
currently available in the cricket G. bimaculatus, with the aim of making new users
aware of the plethora of techniques at their disposal. Detailed descriptions of these
published techniques and step-by-step protocols are thus avoided in this chapter
(we refer the reader to Horch et al. 2017a, b for detailed protocols). While these
protocols are now well established in crickets, these tools are not limited to them and
could in principle be modified or adapted for use in other hemimetabolous insects to
further species-specific research.

8.4.1 Precise Embryonic Staging System

To make meaningful observations of deviations from normal embryonic develop-
ment, one first needs a wild-type reference for any given species. Donoughe and
Extavour (2016) have reported a detailed embryonic staging system for
G. bimaculatus (Figs. 8.4 and 8.5). This system is based on externally observable
characters of the developing cricket embryo that are visible through the eggshell,
thereby circumventing the need for embryonic dissections to ascertain embryonic
developmental stage. This is especially informative for studying early embryos of
insects such as crickets, which are embedded within a large amount of opaque yolk,
making direct observations through the eggshell difficult if not impossible.
G. bimaculatus development, based on this staging, is presented as 24 “egg stages”
and encompasses the entire development of the animal from fertilization to hatching,
based solely on external observable egg characters (called stage identifiers). Each of
the 24 “egg stages” described here corresponds to one or more of 16 “embryonic
stages.” For each stage, the authors provide a list of embryonic developmental
features defining that stage, including features of body segmentation, mesoderm,
and appendage formation. Determining the stage of embryogenesis through the
eggshell is a useful complement to earlier described staging schemes that require
dissection of the embryo (Mito and Noji 2008; Kainz 2009).
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Fig. 8.4 A detailed description of the egg stages (EgS 1–12) in G. bimaculatus. Micrographs in
second column from left help display the morphological features of the egg that can be used to
assign embryos to an egg stage (EgS) and also describe the corresponding morphological features
and embryonic stage (ES) of the embryo within the egg. In the schematic, the embryo is depicted in
gray and yolk in yellow. Micrographs in the right second column from the right are not to scale, and
are taken using lateral views of either a H2B-GFP transgenic live embryo (EgS 1–5) or ventral
views of dissected and fixed, Hoechst 33342-stained embryos (EgS 6-182). Micrographs are not to
scale. This figure is modified from Donoughe and Extavour (2016)
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not include postembryonic development of nymphs to adulthood. This figure is modified from
Donoughe and Extavour (2016)
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8.4.2 Injection Methods for Eggs, Nymphs, and Adults

A basic requirement for many experimental procedures in modern developmental
biology, including live imaging, RNA interference, and gene editing, is the delivery
of synthetic or biological materials into the body of an animal, without disrupting its
health or sacrificing its life. Direct manual injection is one such method and, in the
case of crickets, has been well established and found effective in egg, nymphal,
and adult stages. Two methodological variations are commonly in use for
G. bimaculatus egg injections, differing essentially in the number and arrangement
of embryos for injection, and are described in great detail in Horch et al. (2017a) and
Barry et al. (2019). Both methods are thus described below in brief.

The first variant of the egg injection method, developed by the Noji lab (University
of Tokushima), involves the construction of a mold to house eggs for injections (Horch
et al. 2017a). Watson chambers (which resemble a rectangular mold) are glued onto
microscopic glass slides using double-sided tape. Embryos are then lined up end to end
along the length of the chamber, using a small stainless-steel spatula. The wall of the
chamber and the adhesive of the double-sided tape (on the slide) help secure and hold
the embryos in place during the injections. The second variant, optimized in the
Extavour lab, uses rectangular troughs made using plastic molds set in low-melting
agarose that hold eggs in place (Kainz et al. 2011; Barry et al. 2019). Using this setup,
over 35 embryos per slide can be prepared for injection simultaneously, making it
efficient in terms of preparation time and the number of embryos injected in one sitting.

Regardless of the egg injection method used, eggs are injected under a dissecting
or compound microscope, using a needle held by a micromanipulator (Fig. 8.6a, b).
The needle must be loaded with the desired injection material and connected to a
pressure source, which may be manual (e.g., a syringe) or electronically controlled
compressed gas (e.g., using a commercial micro-injector). The injected material may
be mixed with a dye that is visible under white light (e.g., phenol red or fast green) or
fluorescent light (e.g., fluorescein- or rhodamine-conjugated dextrans) depending on
the user’s preference. The choice of dye will determine the best microscopy and light
regime to be used for injections. Following injections, embryos are allowed to
develop normally in humid incubators at 28 �C on wet paper towels or are sub-
merged in 1� phosphate buffered saline in closed petri dishes and monitored daily
until embryos hatch. Eggs of developmental stages that are turgid and under high
pressure, including very early stages in the first few hours following fertilization and
middle stages following elongation of the germ band, are more difficult to inject than
earlier stages.

For nymphal and adult injections, a manually held Hamilton syringe or any
automated micromanipulator/microinjector system specifically designed for delicate
microinjections and capable of injecting nanoliter volumes can be used effectively.
Nymphs and adults are prepared for injections by first cooling them on ice to
temporarily immobilize them, and then injected either between the abdominal
segments (A2 and A3) or in the soft tissue between the T3 coxa and the thorax.
For site- or tissue-specific injections (e.g., the leg or brain), the injection site should
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Fig. 8.6 Injection and OMMAwell setup. (a) The apparatus used for beveling glass needles for use
in injecting crickets, consisting of a light source, a dissecting microscope, a micromanipulator, and a
beveling stone (Narishige model EG-45 is shown here). (b) Higher magnification of the beveling
setup shown in (a). (c) Different types of agarose mold inserts used for mounting cricket embryos
for application in OMMAwell or, alternatively, for cricket egg injections. (d) OMMAwell
(Donoughe et al. 2018) schematic for top-loaded microwells, used for injecting and imaging cricket
embryos using a configuration for upright objectives. Different assembly components are shown:
the mold insert (white) consists of wells that will house the cricket embryos and is inverted and
attached to the base of the slide (gray). This is then placed into the upright platform (pink) and
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be modified accordingly. However, locales of abundant fat tissue should be avoided
as injection sites in crickets, to help facilitate dispersal of liquid into the body upon
injection, prevent backflow of injected material or hemolymph into the needle, and
prevent blockage of fine needle tips with insect tissue. Irrespective of the injection
site, care should be taken while injecting the needle into the nymphal or adult body,
so as to prevent injuring the internal organs, which could potentially kill the animal
or disrupt recovery. Such injuries can be easily avoided by inserting the needle only
deep enough into the animal body to prevent oozing of material at injection.

Other recommendations for successful injections of adult or juvenile
G. bimaculatus include inserting the needle parallel to the body of the insect, rather
than at a perpendicular angle, injecting larger volumes (relative to the insect size) as
multiple pulses of smaller doses rather than all at once, injecting slowly to prevent
leakage, minimizing handling stress for the animal, making sure the needle is not
blocked prior to insertion, and maintaining basic cleanliness and sterility during the
procedure. Following injection, animals should be allowed to recover in isolated cages
with food and water at room temperature before proceeding with the desired study.

8.4.3 High-Throughput Live Imaging of Embryos Using
OMMAwell

Open Modular Mold for Agarose Microwells (OMMAwell) is a simple, reusable,
all-in-one device that allows users to easily mount and simultaneously image dozens
of live G. bimaculatus embryos consistently and economically for 2D and/or 3D
time-lapse analyses of early development (Donoughe et al. 2018). OMMAwell has
the added advantage of being adaptable and customizable: it has been made to
accommodate the imaging needs of researchers with different experimental designs,
can be used on diverse species (OMMAwell has been successfully designed for and
tested on nine animal species, including many traditional model organisms), and can
be used for both inverted and upright objective microscopes (Fig. 8.6d). With this
device, embryos can be efficiently and quickly lined up in arrays of agarose
microwells, whose dimensions and spacing can also be customized as per individual
user needs (Fig. 8.6c) (see Donoughe et al. 2018). In addition, OMMAwell has
reservoirs to hold live imaging media and help maintain specimen-specific humidity,
osmolarity, and oxygen levels during time-lapse live imaging, thereby enhancing
embryonic survival and data quality. This device also allows positional tracking of

⁄�

Fig. 8.6 (continued) secured at the desired height with the help of a pin (blue). The assembled
components are then lowered into a petri plate containing molten low-melt agarose and allowed to
set. Following the removal of the mold insert from the cooled and set agarose, specimens are added
into the wells in the petri plate either individually or in bulk and covered with low-melt agarose
(in microliter volumes of up to 100 μl) to hold them in place. Embryos can be oriented carefully
using forceps prior to this step. Once the agarose sets, live-imaging media is poured into the dish

8 The Cricket Gryllus bimaculatus: Techniques for Quantitative. . . 197



individual embryos and permits users to control sample orientation for imaging. The
OMMAwell microwell array arrangement is also convenient to hold embryos in
place during injections. OMMAwell has been used to image the development of as
many as 102 G. bimaculatus live embryos simultaneously for 12 consecutive days
(Donoughe et al. 2018). Hatching rates of these embryos were not significantly
different from the hatching rates of controls, suggesting no lingering effects of
phototoxicity, developmental delays, or defects on these embryos from the use of
OMMAwell.

8.4.4 Gene Expression Analyses Using Embryonic or Whole
Mount In Situ Hybridization
and Immunohistochemistry

The ability to detect mRNAs [using in situ hybridization (ISH)] and proteins
[immunohistochemistry using labeled antibodies (IAb)] of interest is central to
whole mount gene expression analyses in any organism. Standard protocols to
study gene expression in other vertebrate and invertebrate embryos have been
applied successfully in G. bimaculatus (Niwa et al. 2000; Mito and Noji 2008).
These include whole mount in situ hybridization using digoxigenin (DIG)-labeled
antisense RNA probes (as per Wilkinson 1992), protein detection (Patel 1994), and
double in situ hybridization using probes labeled with different haptens (e.g.,
Dietrich et al. 1997). Optimized ISH and IAb protocols have also been developed
in this species for specific tissues including the brain, nymphal legs, and wings.
Automated medium- or high-throughput gene expression assays on G. bimaculatus
tissues using specialized robots (e.g., Intavis InsituPro VSi) are also possible
(Extavour lab, unpublished).

8.4.5 RNA Interference

The Noji lab pioneered the establishment of RNA interference (RNAi) technology in
the cricket G. bimaculatus (Miyawaki et al. 2004), and many researchers have since
used this technique successfully to deplete mRNAs of multiple target genes in this
species. Four main types of RNAi techniques have been developed for use in crickets:
embryonic, nymphal, parental, and regenerative RNAi (Miyawaki et al. 2004; Mito
et al. 2005; Nakamura et al. 2008a; Mito and Noji 2008; Ronco et al. 2008).

To perform RNAi, double-stranded RNA (dsRNA), preferably 300–500 nucleo-
tides in length, complementary to a region in the G. bimaculatus gene of interest, is
injected into the eggs (embryonic RNAi) or into the body cavity of nymphs
(nymphal RNAi) or adults (parental RNAi). Successful concentrations of dsRNA
have been reported to range from 2 to 6 μg/μl (e.g., Kainz et al. 2011). It is
recommended that the dsRNAs designed should match a region close to or including
the 30 UTR of the targetG. bimaculatus gene, which may minimize off-target effects.
Typical specificity controls may include testing at least one other dsRNA designed
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against a nonoverlapping fragment of this same gene. Injecting dsRNA against
exogenous genes not encoded by the cricket genome (e.g., DsRed) and injecting
the buffer alone can also serve as meaningful controls and are thus strongly
recommended for every RNAi experiment. Together, these measures can help
researchers distinguish between specific and nonspecific effects of RNAi, allowing
meaningful interpretation of their results.

RNAi is systemic in G. bimaculatus, such that RNAi-induced phenotypes may be
detected throughout the body of the embryo, nymph, or adult, regardless of the site
of injection. Moreover, the injection of dsRNA into sexually mature adult females
allows for observation of RNAi effects not only in the adult animal itself but also in
its progeny (i.e., eggs) that the animal will lay over the weeks following a
postinjection mating as long as the gene knockdown does not interfere with oogen-
esis, fertilization, or egg laying. Alternatively, nymphal RNAi can be conveniently
used to determine gene functions in postembryonic stages. Regenerative RNAi was
optimized in the Noji lab and has been performed as a specific application of
nymphal RNAi in the cricket (Nakamura et al. 2008a). For this procedure, a leg of
a third instar nymph is amputated following dsRNA injection, and the effects of
RNAi are then assessed during the regeneration of the lost leg (which normally
occurs over subsequent molts). Based on these observations, the RNAi response in
crickets can be robust, stable, and even transmissible through subsequent molts
(Nakamura et al. 2008a; Hamada et al. 2015). However, it is recommended that
the robustness of RNAi response, its stability, and duration be determined on a case-
to-case basis; in our hands, there have been instances where the RNAi response for
some genes has lasted only a few days (see Kainz et al. 2011).

8.4.6 Calcium Imaging to Study Neurobiology
and Neuroethology

The cricket has been an important model for neurobiology and neuroethological
studies, and many physiological techniques are easily applicable to the cricket
(Ogawa and Miller 2017). One such technique is that of calcium imaging, which
uses florescent dyes and optical methods to monitor the changes in intracellular
levels of calcium ions in live cells and tissues (Neubauer and MacLean 2010),
including cricket neurons. Information on selection of calcium indicators, dye
loading protocols, experimental designs, and calcium imaging techniques in the
cricket are well described (Ogawa and Miller 2017). In 2013, Matsumoto and
colleagues successfully expressed Yellow Chameleon (YC) 3.60, a genetically
encoded calcium indicator (GECI) in the cricket brain via electroporation
(Matsumoto et al. 2013), enabling prolonged deep imaging of the cricket brain for
the first time. Together with high-resolution microscopy and gene editing tech-
niques, calcium imaging is expected to facilitate major advances in our understand-
ing of cricket neurobiology (Ogawa and Miller 2017). Calcium imaging is not
limited to neurobiology, so its successful establishment in the study of cricket
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nervous tissue suggests that this technique can now also be used to study physiology
in other tissues and cell types in this animal.

8.4.7 High-Sensitivity Trackball Recording Systems
for Studying Phonotaxis and Auditory Neuronal
Plasticity

Acoustic communication is paramount in insects, both within and between species.
Making precise recordings of insect locomotory behavior in response to auditory
stimuli (phonotaxis), such as male calling songs, is often challenging under natural
settings. Various laboratory assays for measuring cricket phonotactic behavior have
been developed, making such studies possible. Examples of such assays include
analyzing the number of crickets that reach an acoustic stimuli or sound target within
a defined time period (Tschuch 1976; Stout et al. 1983), studying cricket behavior in
mazes (Popov and Shuvalov 1977; Rheinlaender and Blätgen 1982), or steering
responses of tethered flying female crickets (Pollack and Hoy 1979). The development
of two different trackball recording systems in crickets has been paramount in
enhancing our understanding of G. bimaculatus auditory steering behavior (Hedwig
2017) and provided detailed insights into insect locomotory behavior in general. All
trackball recording systems measure the movements of the trackball, based on which
insect velocity and direction of insect movement (walking) are inferred, without
allowing the insect to reach the auditory target. In closed-loop trackball systems, the
cricket is allowed to walk and turn freely on the trackball during recordings, with the
trackball compensating for cricket movement by having the ability to counter-rotate.
By contrast, in open-loop systems, the tethered cricket has the ability to walk but not
change its orientation in an acoustic field. Due to their sophisticated design, these
trackball recording systems can now easily be integrated into experimental setups
using other forms of recording, including neuro- or electrophysiological and high-
speed video recording experiments. Thus, combined with the GECI YC3.60 discussed
above, and alongside other sophisticated imaging and video recording techniques (see
below), trackball recording systems are expected to provide new insights not only into
cricket biology but also into the study of insect phonotaxis in general.

8.4.8 Automated and Customizable Video Tracking Systems,
Artificial Crickets, and Cricket Robots for Synthetic
Neuroethology and Social Behavior

Crickets have been used over the past several decades as systems to study behaviors
including mating, flight, aggression, wandering, obstacle avoidance, and importantly,
to study the neurophysiology underlying these processes. When investigating, quan-
tifying, and qualifying animal behavior, dependable and accurate measurement sys-
tems are needed to record animal responses to external stimuli, at both behavioral and
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physiological levels. The advent of engineering approaches in crickets, especially
robotics, is expected to greatly facilitate such research and is the genesis of the field
of cricket synthetic neuroethology. Aonuma and colleagues have described a novel
approach developed for crickets, where provoked animal behavior in response to
computer-generated simulation and robots is captured to effectively bridge the gap
between insect behavior and physiology (Aonuma 2017). Different commercially
available automated video tracking systems designed to follow cricket movement
have also been previously described (Noldus et al. 2001). Recently, another custom-
izable tracking system based on a simple open-source solution called SwisTrack
(Lochmatter et al. 2008) has been introduced for use in crickets. Using this system,
multiple crickets can be video recorded and tracked simultaneously. Because the entire
process is semiautomatic, data collection and its interpretation are more efficient than
previous methods that were based exclusively on manual tracking. Using artificial
crickets (e.g., Funato et al. 2011; Kawabata et al. 2012; Mizuno et al. 2012) or cricket
robots (Funato et al. 2008, 2011) alongside computer modeling is another way of
analyzing cricket behavior that has recently been reported. Further detailed informa-
tion on artificial crickets, cricket robots, biomimetic robots (Ritzmann et al. 2000), and
behavioral modeling in this species can be found in Aonuma (2017).

8.4.9 Standardized Protocols for Assessing Learning
and Memory

G. bimaculatus has been reported to have a robust memory and thus has been
exploited for studying the neural mechanisms underlying olfactory, auditory, and
visual learning. Mizunami and colleagues have published detailed protocols for
classical conditioning, operant testing, associative learning, memory retention, and
subsequent data analyses in G. bimaculatus (Mizunami and Matsumoto 2017a). A
“classical conditioning and operant testing” procedure has also been developed in
crickets by these researchers. The establishment of such protocols has resulted in the
elucidation of detailed cellular mechanisms and signaling cascades that are impor-
tant for memory formation in crickets. These studies have additionally revealed that
crickets display unexpected diversity in the mechanisms underlying these processes
in comparison to other insects including Drosophila (Mizunami and Matsumoto
2017b). The use of such classical conditioning paradigms and their variants in
crickets may provide novel breakthroughs in our understanding of learning, cogni-
tion, and memory across animals.

8.4.10 Transgenic Lines

Stable transgenic lines are an invaluable tool for developmental genetics and con-
tribute to the successful establishment of a model animal system. Transgenesis using
P elements, which are the transposon of choice for Drosophila transgenesis (Rubin
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and Spradling 1982), have been found ineffective in crickets, such that other
transposable elements need to be used to achieve transformation in this species.
Zhang and colleagues (2002) showed that Minos transposons (Pavlopoulos et al.
2007) are active in G. bimaculatus embryos and highlighted the possibility of using
these as gene vectors for germ line transformation in this species. However, to our
knowledge, this transposon has not yet been used to establish stable transgenic
cricket lines. Shinmyo et al. (2004) succeeded in somatic transformation of
G. bimaculatus embryos, using the piggyBac transposon (Handler et al. 1998) to
achieve somatic insertion of a construct containing an enhanced green florescent
protein (eGFP) coding region driven by a G. bimaculatus actin 3/4 promoter.
Construction of plasmids and injection protocols for this line are as described in
Shinmyo et al. (2004) and Zhang et al. (2002). Subsequently, this technique has been
optimized to achieve germ line transmission of transgenes (Nakamura et al. 2010).

At the time of writing, a histone2B-GFP (H2B-GFP) transgenic line is stably
maintained in multiple laboratories (Nakamura et al. 2010). In this line, the promoter
of the G. bimaculatus actin orthologue (Gb-Actin) drives the expression of the
Gb-histone2B protein tagged with eGFP. This transgene is ubiquitously and consti-
tutively expressed and is maternally contributed to eggs. Based on viability ratios of
the embryos laid by this line, it is likely that the transgene is sublethal in homozy-
gosis (Extavour lab, unpublished observations). As there are no balancer chromo-
somes for G. bimaculatus, heterozygotes must be manually selected at every
generation to maintain the transgene (Extavour lab, unpublished observations).
Zygotic expression of this transgene begins at approximately the fourth day after
egg laying (AEL) at 28 �C, and eggs expressing the transgene can then be easily
identified and selected between 5 and 10 days AEL, based on the presence of
brightly fluorescent nuclei under a fluorescent stereomicroscope (Fig. 8.2e top and
bottom).

8.4.11 Genome Editing Using CRISPR/Cas9, TALEN,
and Zinc-Finger Nucleases

Sophisticated functional genetics techniques commonly used to modify genomes
in vivo at a specific site include clustered regularly interspaced palindromic repeats
(CRISPR)/CRISPR-associated nuclease 9 (Cas9), collectively known as the
CRISPR/Cas9 system (Cong et al. 2013), transcription activator-like (TAL) effector
nucleases (TALENs), and zinc-finger nucleases (ZFNs) (Porteus and Carroll 2005;
Moscou and Bogdanove 2009; Remy et al. 2010; Miller et al. 2011; Jinek et al.
2012). All of these approaches work by generating double-stranded breaks in target
DNA sequences, which in turn trigger the cell’s DNA damage response (Remy et al.
2010), and this cellular response can then generate mutations (insertions or dele-
tions) in the targeted gene. All of these techniques are now available and functional
in crickets. The Mito lab established and reported the use of ZFNs and TALENs in
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crickets in 2012, by successfully creating homozygous genetic knockouts (Watanabe
et al. 2012). CRISPR/Cas9 has also now been effectively used for the generation of
both knock-ins (Horch et al. 2017b) and knockouts (Awata et al. 2015) of cricket
genes. Detailed protocols for knocking-in or knocking-out cricket genes using the
CRISPR/Cas9 method are available in Horch et al. (2017b).

8.4.12 Genomics and Transcriptomics

While no genome sequence is currently publicly available for G. bimaculatus, a
number of de novo transcriptomes have been published for this species, providing
gene expression datasets for a number of different specific tissue types and devel-
opmental stages. To date, these include transcriptomes of the ovaries, embryos, the
prothoracic ganglion, and regenerating legs (Zeng and Extavour 2012; Bando et al.
2013; Zeng et al. 2013; Fisher et al. 2018). Moreover, several transcriptomes
reflecting gene expression at different life stages (Berdan et al. 2016), in the male
accessory gland (Andres et al. 2013), fat body and flight muscles of different
ecological morphs (Vellichirammal et al. 2014), and under cold-acclimation condi-
tions (Des Marteaux et al. 2017; Toxopeus et al. 2019), are available for other
species of the genus.

8.5 Novel Insights into Biological Processes Using Forward
Genetics in a Hemimetabolous Insect

G. bimaculatus has been effectively used to study various disciplines of biological
sciences over the past decades. These include early embryonic development and
body patterning, tissue and organ system specification, regeneration, body size
regulation, memory and learning, reproductive biology, ecology, physiology, and
endocrinology (reviewed in Horch et al. 2017b). Here, we will therefore refrain from
reiterating the contributions that these results have made to our understanding of
biology. Instead, we will briefly discuss one example of a novel insight that the
biological community has gained through the use of functional genetics in the
cricket.

8.6 The Evolution of the oskar Gene and Its Implications
for Germ-Line Research

Germ cells are the cells that give rise to eggs and sperm. They are therefore an
important cell type in sexually reproducing organisms and are sometimes referred to
as the ultimate totipotent stem cell (Cinalli et al. 2008), because they alone maintain
a genetic link between generations. In a developing embryo, the first cells to give rise
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to the germ cells by clonal mitotic divisions are known as the primordial germ cells
(PGCs). Across metazoans, PGCs are specified using one of two mechanisms
(Extavour and Akam 2003). In some animals, including G. bimaculatus and Mus
musculus inductive cell–cell signaling among neighboring somatic cells instructs
certain cells to adopt PGC fate; this method of PGC specification is known as
“induction.” In other animals, including the fruit fly D. melanogaster, the nematode
worm Caenorhabditis elegans, the zebrafish Danio rerio, and the clawed frog
Xenopus laevis, PGCs are instead specified by “inheritance.” In this mechanism,
PGCs are specified very early in development through the cytoplasmic inheritance of
a maternally derived special cytoplasm called “germ plasm,” which often contains
determinants that confer germ-line fate.

oskar is an insect-specific gene critical for the establishment of germ plasm in
D. melanogaster and is the only gene reported in the animal kingdom to be both
necessary and sufficient for germ cell formation (Lehmann and Nüsslein-Volhard
1986; Ephrussi et al. 1991; Kim-Ha et al. 1991; Ephrussi and Lehmann 1992; Smith
et al. 1992). Following its discovery in D. melanogaster, oskar orthologues were
reported in the genomes of other holometabolous insects known to specify their
germ cells using germ plasm (Goltsev et al. 2004; Juhn and James 2006; Juhn et al.
2008; Lynch et al. 2011). Interestingly, oskar appears to be absent from many insect
genomes that are known to lack germ plasm, including the bee A. mellifera, the
beetle T. castaneum, and the silk moth B. mori (summarized by Quan and Lynch
2016). Based on this observation and the fact that hemimetabolous insects reportedly
lack germ plasm (see Ewen-Campen et al. 2013 and references therein), it was
hypothesized that oskar was a novel gene that arose at the base of the Holometabola,
concurrent with the advent of insect germ plasm (Lynch et al. 2011). However,
Ewen-Campen and colleagues discovered an oskar orthologue in the cricket
G. bimaculatus genome and demonstrated that in this species, oskar is neither
expressed at high levels in PGCs nor required for PGC formation (Ewen-Campen
et al. 2012). Instead, cricket oskar is expressed in the neuroblasts (stem cells that
arise from the neural ectoderm and give rise to the nervous system in Pancrustacea)
of the brain and central nervous system (CNS) of the developing embryo, and
is required for proper embryonic CNS patterning (Ewen-Campen et al. 2012). This
observation, taken together with the reports that D. melanogaster oskar also plays a
neural role (Xu et al. 2013), suggests two novel hypotheses: (1) oskar arose at least
50 million years earlier in insect evolution than previously hypothesized, before the
divergence of Hemimetabola and Holometabola, and (2) oskar’s ancestral role in
insects may have been in the nervous system and not in the germ line. This implies
that oskar may have been co-opted for its essential role in holometabolous
germ plasm assembly rather than having originated concurrently with germ plasm
as had been previously suggested. This significantly changes our understanding of
the evolutionary origins and functional evolution not only of this gene but perhaps
also of insect germ plasm. Moreover, it constitutes an important example of how
novel genes may arise and become co-opted, across evolutionary time scales, to
perform different biological roles in animals.
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8.7 Genomic Resources in Other Orthopterans

For an organism to become widely used as a research model for comparative or
evolutionary studies, an important contributing factor is whether resources and tools
are also available to study its close relatives. With this in mind, we will discuss
available resources in other orthopterans that may be of use in aiding comparative
work with G. bimaculatus. To our knowledge, at the time of writing, large-scale
genomic resources are available for only two other orthopterans, a locust and a
Hawaiian cricket species.

8.7.1 Resources in Field Crickets

Several transcriptomes are available for tissues and stages of many species of the
genus Gryllus, including (1) gene expression at different life stages in G. rubens
(Berdan et al. 2016), (2) in the male accessory gland of G. firmus and
G. pennsylvanicus (Braswell et al. 2006; Andres et al. 2013), (3) fat body and flight
muscles of different ecological morphs of G. firmus (Vellichirammal et al. 2014),
(4) under cold-acclimation in G. veletis (Des Marteaux et al. 2017; Toxopeus et al.
2019), or (5) adult femur-derived transcriptomes from G. assimilis (Palacios-
Gimenez et al. 2018). Genomic resources are also available for an inbred line of
G. assimilis (Palacios-Gimenez et al. 2018). Outside of the genus Gryllus, large-
scale genomic resources are also available for the Hawaiian cricket Laupala
kohalensis in the form of an EST resource from a nerve cord cDNA library (Danley
et al. 2007) and a de novo draft genome (Blankers et al. 2018). In fact, the
L. kohalensis genome is, to our knowledge, the only published cricket genome to
date. Transcriptomic data are also available for Allonemobius fasciatus embryos
(Reynolds and Hand 2009), male accessory glands of Gryllodes sigillatus (Pauchet
et al. 2015), and the testis, accessory glands, and adult body of Teleogryllus
oceanicus (Bailey et al. 2013).

8.7.2 Resources in Grasshoppers and Locusts

A de novo transcriptome spanning several stages is available for the grasshoppers
Chorthippus biguttulus and Oxya chinensis sinuosa (Kim et al. 2016) and for
nymphs, adult females and males of Xenocatantops brachycerus (Zhao et al.
2018). An organ-specific transcriptome is available for the gut of Oedaleus asiaticus
(Huang et al. 2017), an EST database exists for transcripts from the central nervous
system of Schistocerca gregaria (Badisco et al. 2011), and a de novo transcriptome
for Tetrix japonica (Qiu et al. 2017) is also available. In addition, other tools
including RNAi have been tested and reported to be successful in S. americana
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(Dong and Friedrich 2005). Locusta migratoria is a well-studied locust species that
has large-scale genomic resources available in the form of a de novo genome and
transcriptome (Wang et al. 2014) and an EST database from whole body and
dissected organs (Kang et al. 2004; Ma et al. 2006). In addition, RNAi has been
established and reported to be successful in adults, nymphs, and embryos for this
species (He et al. 2006).

8.8 Commercial Importance of Crickets as Edible Insects
and “Food of the Future”

In this chapter we have primarily focused on crickets as emerging evo-devo models.
In this final section, we would like to briefly highlight other reasons that crickets are
gaining popularity as study systems. Given their cosmopolitan distribution (all areas
of the world, except the arctic and subarctic regions) and over 2400 documented
species, crickets represent the most diverse lineage of “jumping or leaping” insects
(Horch et al. 2017b). While the chirping sounds made by males have historically
given them acoustic appeal as pets and in research, many species are now becoming
economically important as an alternative food source for humans (Huis et al. 2013;
Horch et al. 2017b), as feedstock for poultry (Ravindran and Blair 1993), or as fish
bait (Huis et al. 2013), all of which are multibillion dollar industries. With the human
population predicted to reach nine billion by the year 2050 (Huis et al. 2013), meat
production and consumption is soon expected to reach unsustainable levels (Boland
et al. 2013). Insects, especially crickets, have therefore been proposed and marketed
as a novel, alternative, environmentally efficient food source with high nutritional
value (Oonincx and de Boer 2012; Huis et al. 2013; Deroy et al. 2015).

Crickets are reportedly common street snacks in some parts of the world and have
been part of the traditional diet in Thailand, the Lao People’s Democratic Republic,
Vietnam, the Democratic Republic of Congo, and Nigeria for hundreds of years
(Kuhnlein et al. 2009; Huis et al. 2013). As an example, over 20,000 farmers are
reported to rear crickets in Thailand, resulting in an estimated production of over
7500 tons per year in this country alone (Hanboonsong et al. 2013). To increase their
appeal in the West, crickets are now being advertised and marketed to be eaten
whole, in granular or in paste form, and as ingredients in commercially available
flours and protein bars (e.g., Aspire Food Group USA, Inc.). While many species of
crickets are edible (e.g., G. bimaculatus, Gryllodes sigillatus, A. domesticus,
A. testacea, T. occipitalis, T. mitratus, and Brachytrupes portentosus), to our
knowledge currently only G. bimaculatus, G. sigillatus, and A. domesticus are
farmed economically for human consumption (Huis et al. 2013).

The use of crickets has the potential to change the future of the food industry,
because of how effective they are in maximizing nutrition for minimal resources.
Cricket rearing is comparatively inexpensive, requires a fraction of input resources,
and has fewer negative environmental impacts than rearing traditional vertebrate
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protein sources (Halloran et al. 2017). Crickets produce only 1% of greenhouse
gases compared to cattle and pigs, in addition to showing an approximate tenfold
reduction in ammonia emission (Oonincx et al. 2010), all relevant factors when
considering sustainable production in the age of climate change. They act as a
complete protein source and consist of over 50% protein by volume (Wang et al.
2004). Other advantages of eating crickets include their high edible weight:
Nakagaki and DeFoliart (1991) have estimated that over 80% of a cricket is edible
and digestible compared to 55% for chicken and pigs and 40% for cattle. This
translates into making crickets twice as efficient as chicken, at least 4 times as
efficient as pigs, and 12 times more efficient as cattle in converting feed into meat
(Huis et al. 2013). As a specific example, the food conversion efficiency of the house
cricket Acheta domesticus has been reported to be five times higher than beef, and
when their fecundity is considered, this has been shown to increase as much as 15- to
20-fold (Horch et al. 2017b; Nakagaki and Defoliart 1991). Farming crickets is
projected to become a multimillion dollar industry, with the US market for edible
insects alone expected to exceed $50 million by as early as 2023 (Ahuja and Deb
2018).

The development of a novel food source like crickets must include assessing the
potential risks involved with consumption of such sources. Therefore, there is
increased interest in understanding the biology of these insects. While studies
addressing entomophagy-induced food allergies (especially ones arising from eating
crickets alone) are few, there is some preliminary evidence to confirm that
crustacean-allergic individuals (or people with seafood allergies) may also show
cross-reactivity to edible insects in general (Srinroch et al. 2015; Pener 2016; Ribeiro
et al. 2018). Another study has reported that some individuals can develop asthmatic
symptoms upon ingesting insects belonging to Orthoptera (Auerswald and Lopata
2005). Overall, however, eating and/or exposure to insects is not expected to pose
significant risks of allergenic reactions for most people, especially if the individual
has no prior history of arthropod or insect allergen sensitivity (Huis et al. 2013). In
summary, the disadvantages associated with eating insects like crickets currently
seem few and the advantages many. Consuming reared insects is potentially more
environmentally friendly, nutritious, cheap, and affordable for people in all parts of
the world. Cricket rearing is one way to use land efficiently, reduce or lower
pesticide use and greenhouse gas emissions, may boost human and/or animal
immunity (Goodman 1989; Muzzarelli 2010; Taufek et al. 2016), and finally
improve the livelihood of women and children in rural areas by supporting local
economies (Huis et al. 2013).

8.9 Conclusion

The successful establishment of the many functional and genetic manipulation tools
in crickets has contributed to a new era of non-drosophilid insect research, not
limited to evo-devo research. We hope that scientists from various disciplines feel
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encouraged to use the cricket as a system to address intriguing questions in their
respective fields.
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