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ABSTRACT

Convergent morphologies often arise due to similar selective pressures in independent lineages. It is
poorly understood whether the same or different developmental genetic mechanisms underlie such
convergence. Here we show that independent evolution of a reproductive trait, ovariole number, has
resulted from changes in distinct developmental mechanisms, each of which may have a different
underlying genetic basis in Drosophila. Ovariole number in Drosophila is species-specific, highly
variable, and largely under genetic control. Convergent changes in Drosophila ovariole number have
evolved independently within and between species. We previously showed that the number of a
specific ovarian cell type, terminal filament (TF) cells, determines ovariole number. Here we examine TF
cell development in different Drosophila lineages that independently evolved a significantly lower
ovariole number than the D. melanogaster Oregon R strain. We show that in these Drosophila lineages,
reduction in ovariole number occurs primarily through variations in one of two different develop-
mental mechanisms: (1) reduced number of somatic gonad precursors (SGP cells) specified during
embryogenesis; or (2) alterations of somatic gonad cell morphogenesis and differentiation in larval life.
Mutations in the D. melanogaster Insulin Receptor (InR) alter SGP cell number but not ovarian
morphogenesis, while targeted loss of function of bric-a-brac 2 (bab2) affects morphogenesis without
changing SGP cell number. Thus, evolution can produce similar ovariole numbers through distinct

developmental mechanisms, likely controlled by different genetic mechanisms.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Convergent morphologies can evolve independently in different
lineages, often as a result of similar selective pressures or functional
requirements. An outstanding question in evolutionary and develop-
mental biology is whether similar traits evolve convergently through
changes in the same or different developmental and genetic pro-
cesses. Changes in different processes imply that natural selection can
act on multiple developmental processes to achieve the same out-
comes, whereas changes in the same processes may suggest that
natural selection is constrained to act on one developmental event
(Losos, 2011; Sanger et al,, 2012). In recent years, several examples of
convergent evolution at the molecular, cellular and morphological
levels have been examined (Aminetzach et al., 2009; Moczek et al.,
2006; Protas et al.,, 2006; Sucena et al, 2003; Tanaka et al., 2009;
Wittkopp et al., 2003). In some of these cases, similar morphologies
have evolved independently via changes in the same genes or genetic
pathways (Chan et al,, 2010; Protas et al., 2006; Prud’homme et al.,
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2006; Sucena et al, 2003; Zhang et al., 2012). However, in other
cases convergent evolution of similar traits arises through different
developmental or genetic mechanisms (Moczek et al., 2006; Shapiro
et al, 2009; Steiner et al.,, 2009; Tanaka et al.,, 2009; Wittkopp et al.,
2003; Zwaan et al., 2000).

In many of the cases where the genetic basis is well under-
stood, the convergent trait hinges on the terminal differentiation
of a single cell type, such as adult cuticle pigmentation (Gompel
and Carroll, 2003; Prud’homme et al., 2006; Steiner et al., 2009;
Wittkopp et al., 2003) or larval hairs (Sucena et al., 2003) in
Drosophila. However, there are few well-studied examples in
which the convergent trait involves a multicellular structure
composed of many distinct cell types (Moczek et al.,, 2006;
Tanaka et al.,, 2009; Zwaan et al.,, 2000). Moreover, while many
external anatomical traits have been studied in this context, the
evolution of internal reproductive morphologies that directly
affect fecundity are less well understood. As a step towards
elucidating the genetic mechanisms underlying the evolution of
reproductive morphologies, here we examine changes in devel-
opment that lead to major differences in ovariole number, an
aspect of ovarian morphology that directly affects egg production
and reproductive capacity in Drosophila.
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All insect ovaries are composed of ovarioles, which are egg-
producing substructures of the ovary. Ovariole number is posi-
tively correlated with egg production and fecundity (David, 1970),
suggesting that this trait can have a significant impact on fitness
and is likely to be under selective pressure. Ovariole number also
varies across latitudinal (Boulétreau-Merle et al., 1992; David and
Bocquet, 1975; Delpuech et al., 1995; Gibert et al., 2004; Paaby
et al., 2010; Schmidt et al., 2005) and altitudinal (Collinge et al.,
2006; Wayne et al., 2005) clines, further suggesting that this trait
may be locally adaptive. Ovariole number variation across insects
is dramatic, ranging from fewer than five per ovary in some flies
to hundreds per ovary in crickets and grasshoppers (Biining,
1994).

Ovariole number has been the subject of extensive ecological
and quantitative genetic studies for decades (reviewed in Hodin,
2009). Albeit not to single-gene resolution, these investigations
have shown that ovariole number is a polygenic trait (Coyne et al.,
1991; Thomas-Orillard, 1976), and inter- and intraspecific ovar-
iole number variation is linked to changes at numerous loci
(Bergland et al., 2008; Orgogozo et al., 2006; Telonis-Scott et al.,
2005; Wayne et al., 2001; Wayne and Mclintyre, 2002). Determin-
ing promising candidate genes from these QTL studies is difficult,
because ovarian morphogenesis is relatively poorly understood,
and only a small number of genes have been shown to play a
specific role in ovariole formation (Gancz et al., 2011; Godt and
Laski, 1995; Hodin and Riddiford, 1998). Thus candidate genes
within these loci have not yet been functionally investigated for
causal links to ovariole number. We hypothesized that a better
understanding of the cellular and developmental mechanisms
governing ovariole formation would help to identify candidate
genes that may underlie ovariole number evolution.

Ovariole morphogenesis begins with the formation of stacks of
somatic cells, called terminal filaments (TFs), in the anterior of the
larval ovary (Godt and Laski, 1995) (Fig. 2A). Each TF is the
starting point for the development of one ovariole, such that
ovariole number is directly determined by TF number (Hodin and
Riddiford, 2000). We previously showed that a major determinant
of TF number is the total number of TF precursor cells present in
the larval ovary before TF formation begins, and that TF cell
number varies between Drosophila species with different ovariole
numbers (Sarikaya et al.,, 2012). Here we explore even earlier
developmental processes to understand why Drosophila lineages
have different TF cell numbers, and whether TF cell number
variation can explain differences in ovariole number in a broader
range of Drosophilids.

In this study we analyze and compare the process of ovarian
morphogenesis in Drosophila lineages that independently evolved
a significantly lower average ovariole number than the North
American D. melanogaster Oregon R (OR) strain: the D. melanoga-
ster “India” strain (Ind) and the single-niche specialist D. sechellia
“Robertson” strain (Ds) (Table 1, Fig. 1) (Markow and O’Grady,
2007). One hypothesis for the adaptive significance of lower
ovariole number may be its positive correlation with larger egg
size that often accompanies ecological specialization in Drosophila
and other flies (Kambysellis et al.,, 1995; Markow et al.,, 2009;
Rkha et al., 1997), and could potentially lead to higher hatching
rates or larval fitness (Azevedo et al., 1997). We show that similar
TF cell numbers and therefore similar ovariole numbers are
achieved in these lineages by changes in very different develop-
mental processes. Establishing a smaller pool of somatic gonad
cells during embryogenesis in Ds, or changing morphogenesis of
specific ovarian cell types during larval development in Ind, both
result in lower ovariole numbers than in OR. By analyzing the
development of different ovarian cell types in these lineages, we
demonstrate that within the same organ, evolutionary changes
occur independently in different cell types. We use functional
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Table 1
Ovariole number of wild type Drosophila strains used in this study.

Species Strain Average ovariole Standard n?
number per ovary deviation
D. melanogaster® Oregon R (OR) 18.2 2.8 40
wils 18.6 2.1 22
Nevada-04 18.4 2.2 22
RAL-301 221 23 22
Catalina Island, CA 22.6 23 22
Santa Fe, NM 225 22 22
India (Ind) 12.2 1.4 22
France 16.3 1.8 20
D. sechellia (Ds) 14021-0248.25° 7.6 1.0 54
D. yakuba® 1402-0261.01 14.2 1.9 5

% n indicates total number of individual adult ovaries in which ovariole
numbers were counted.

® All D. melanogaster strains derive from flies originally collected in North
America except for the India and France strains.

€ Strain numbers indicate stock numbers from the Drosophila Species Stock
Center.

4 Numbers shown for D. yakuba indicate terminal filament number, which
approximately equals adult ovariole number as shown previously (Sarikaya et al.,
2012; Hodin and Riddiford, 2000) and in this study. These numbers also
correspond with previously reported numbers for average ovariole number in
this species (Markow et al., 2009).
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Fig. 1. Reduced ovariole number has evolved independently in Ds and Ind.
Ancestral state reconstruction of ovariole number across members of the genus
Drosophila. Maximum likelihood values are indicated in boxes at nodes. Lineages
analyzed in this study are highlighted in gray. The node representing the last
common ancestor of OR, Ind, and Ds is indicated in boldface. Significant increases
or decreases in average ovariole number relative to ancestral values are indicated
in red and blue, respectively. For 95% confidence intervals see Table S1.

analysis in D. melanogaster to show that different genetic path-
ways influence these distinct developmental mechanisms. Our
results show that major changes in reproductive capacity can
evolve via distinct developmental mechanisms among closely
related lineages.

Materials and methods
Drosophila strains and mutant stocks

D. melanogaster OregonR-C (Bloomington Drosophila Stock
Center (BDSC) #5), D. yakuba (Drosophila Species Stock Center

(DSSC) #1402-0261.01) and D. sechellia Robertson strain (DSSC
£#14021-0248.25) were obtained from the Hartl lab (Harvard
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University). North American D. melanogaster strains (isofemale
lines derived from females collected in respective locations)
obtained from the DePace lab (Harvard Medical School) were
Nevada-04 (NV), Raleigh-301 (NC), Catalina Island (CA), and
Sante Fe (NM). The D. melanogaster India (DSSC #14021-0231.06)
and France strains were a gift of the Ludwig lab (University
of Chicago). Other BDSC stocks used were the hypomorphic
InR alleles InRF'® (#9646) and InR““?® (29554) and w;
P{w[+mW.hs]=GawB}bab1"#%42/TM6B Tb' (referred to as bab-
GAL4 in the text; #6803) (Cabrera et al., 2002).The bab2 RNAi line
w; bab2-RNAi (Transformant ID #49042) was obtained from the
Vienna Drosophila RNAi Center.

Ancestral state reconstruction

Maximum likelihood estimates of ancestral character state and
associated 95% confidence intervals at each internal node were
derived using the Analysis of Phylogenetics and Evolution (APE)
package in R (Paradis et al, 2004). The phylogenetic tree and
branch lengths, derived from synonymous substitution rates in 12
Drosophilids, are from Heger and Ponting (2007). The ovariole
numbers used in these analyses are from Markow et al. (2009).

Culture conditions and larval staging

Drosophila stocks were maintained at 25 °C at 60% humidity
under optimal nutrition and without crowding as previously
described (Sarikaya et al., 2012). For larval staging analyses, eggs
were collected overnight on medium (supplemented with a
1 cm? piece of filter paper soaked in N-caprylic acid (Sigma) for
D. sechellia) in 6 cm-dish collection chambers. 18-22 h after
collection start, dishes were cleared of adult flies and hatched
larvae. Newly hatched larvae were collected 2 h after clearing and
transferred to fresh vials containing standard medium ( <100
larvae per vial), establishing LO ( & 1 h) larvae. At each time point,
body size was used to guide selection of appropriately developed
larvae. Larval-pupal transition (LP) stage larvae were identified as
previously described (Ashburner et al., 2005).

Adult analysis: ovariole number and body size

Adult ovariole number was determined as previously
described (Sarikaya et al., 2012). Gonads from individuals of a
particular genotype or stage were pooled and remained so
through mounting. Although not eliminated, the possibility of
counting ovaries from the same individual was reduced by
mounting samples from significantly more individuals than ovar-
ies analyzed. ANOVA analysis confirmed that variance was not
significantly artificially decreased by within-individual correla-
tion (not shown). Adult tibia length was used as a proxy for adult
body size (Macdonald and Goldstein, 1999). Images were taken
using a Zeiss Axiolmager Z1 and a Zeiss MRm AxioCam driven by
AxioVision v4.6. Measurements were performed as previously
described using Image ] (v.1.45) software.

Larval analysis: TFC number per TF, TFC number, and TFC size

These parameters were determined as previously described
(Sarikaya et al., 2012) with the modification that optical confocal
sections were captured at 0.9-1.2 x zoom in 0.5-2.5 um thick
sections spanning the entire ovary, and analyzed using Image
J (v.1.45) software. When reporting LP stage somatic cell propor-
tioning, ‘TF cells’ measurements include a small proportion of
cells that will adopt cap cell fate. As reported by Godt and Laski
(1995), cap cell number per niche/TF averages 2.5. We observed
similar values in lineages reported here (average=2.85 (standard
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deviation (sd)=0.75), 2.71 (sd=0.86), and 2.82 (sd=0.79) for OR,
Ds, and Ind, respectively), with no statistically significant differ-
ences among lineages (p=0.561, OR vs. Ds; 0.877, OR vs Ind;
0.648, Ds vs Ind). Cap cells were identified as cells with lower
nuclear Engrailed (compared to strong expression in TF cells),
rounded (versus flattened) nuclei, and directly adjacent to Vasa-
expressing germ cells. Statistical comparisons between sample
means were made using a two-tailed Student’s t-test, and
comparisons of mean cell proportions were made using Pearson’s
chi-squared test.

Larval analysis: total cell number

Total cell number was counted using a methodology similar
to that used for TFC number counts. At the LP stage, “anterior
somatic cells” are somatic cells located anterior to the germ cells,
and include TFCs and apical cells, which were distinguished by
the presence (TFC) or absence (apical) of Engrailed expression. In
a few cases, cells adjacent to germ cells were also counted as
anterior (apical) somatic cells if their nuclei were elongated along
the A-P axis, as these cells are apical cells that are migrating
posteriorly to delineate individual ovarioles. All other somatic
cells were called “posterior somatic cells,” the majority of which
result from swarm cell migration, which is nearly complete by the
LP stage. Swarm cells prior to late-third instar stages were
identified by morphology and location within the ovary relative
to other cell types. Germ cells were identified by Vasa expression.

Larval analysis: ovary volume

Ovary volume was approximated by measuring the volume of
all ovarian nuclei using Volocity (v.4, Perkin Elmer) to define
“objects” as those points exceeding 7.5% intensity level (empiri-
cally determined to be the optimal intensity value) in the Hoechst
channel. For this analysis, images of ovaries were obtained using
similar, but not identical, confocal settings. However, the use of
percent intensity, versus absolute intensity, to identify objects
controls for acquisition differences. Objects smaller than 10 pm?
were discarded. The largest object identified was recorded as the
ovary volume approximation. The volumes of additional objects
were added to the largest volume if the object was > 1% the
volume of the largest object.

Immunohistochemistry

Immunostaining was carried out as previously described
(Sarikaya et al., 2012). The following primary antibodies were
used: mouse 4D9 anti-Engrailed (1:40, Developmental Studies
Hybridoma Bank), guinea pig anti-Traffic jam (1:30,000, gift of
D. Godt, University of Toronto), rabbit anti-Vasa (1:500, gift of
P. Lasko, McGill University). Secondary reagents used were
Hoechst 33342 (Sigma, 1:500 of 10 mg/ml stock solution), goat
anti-mouse Alexa 568, goat anti-guinea pig Alexa 488, and
donkey anti-rabbit Alexa 647 (1:500, Invitrogen). Samples were
mounted in Vectashield (Vector labs) and imaged using a Zeiss
LSM 710 confocal microscope.

Results
Reduced ovariole number convergently evolved in Ds and Ind

Ovariole number is highly variable among the Drosophilids
(reviewed by Hodin, 2009). Although ovariole number is pheno-
typically plastic and can vary due to different environmental or
nutritional conditions (Capy et al.,, 1993; Kambysellis and Heed,
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1971; Sarikaya et al., 2012), under constant environmental con-
ditions it falls within a heritable, species-specific range. For this
study we chose to analyze two strains with a significantly lower
average ovariole number than D. melanogaster Oregon R (OR). The
India (Ind) strain of D. melanogaster has an average of 24.4
ovarioles per female (taken as double the average value per
ovary), while D. sechellia (Ds) has an average of 15.2 ovarioles
per female, both of which are significantly lower than the OR
average of 36.4 ovarioles per female (Table 1). Ind likely shared a
last common ancestor with OR in Africa prior to human commen-
sal dispersal in the Neolithic (Capy et al., 2004). Ds diverged from
the lineage containing D. melanogaster approximately 5.4 million
years ago (Tamura et al., 2004), and has evolved a single-niche
specialization on the Morinda citrifolia fruit as its plant host in the
Seychelles (Rkha et al., 1997). Given the relatively higher ovariole
numbers observed in most other members of the melanogaster
subgroup (Fig. 1), we therefore hypothesized that the reduction in
ovariole number had occurred independently in the Ind and Ds
lineages. To test this hypothesis, we performed an ancestral state
reconstruction for ovariole number across the Drosophila family to
generate a prediction for the ovariole number in the ancestor to
OR, Ind and Ds. The maximum likelihood estimate for the average
ovariole number of the ancestor to OR, Ind, and Ds is 31.7
ovarioles per female, with a 95% confidence interval of 25.2—
38.3 ovarioles (Fig. 1 and Table S1). Average ovariole number per
female in OR (36.4) is within this range, indicating that ovariole
number in OR is not significantly different from the number
hypothesized for its shared ancestor with Ind and Ds. However,
average ovariole number in both Ds (15.2) and Ind (24.8) are
below the ancestral range, indicating that ovariole number was
independently reduced in both of these lineages. To address the
possibility that Ind represents a segregating variant of the North
American D. melanogaster range, we note that ovariole numbers in
Indian populations (Rajpurohit et al, 2008) are, on average,
smaller than those in North American populations (Capy et al.,
1993). We also counted ovariole number in five additional

() somatic cell .— terminal filament (TF) cell
— € apical cell
(Dgermeell Oy swarm cell

adult ovariole number (solid bars)
TF number at LP stage (dotted bars)

Ind
n=22, n=10

n=40,n=10 n=54,n=10

D. melanogaster strains from North America, and found that their
average ovariole numbers were always higher than those for Ind
(Table 1). Taken together, these data show that ovariole number
in OR is similar to the ancestral state of these three lineages, and
reduced ovariole number convergently evolved in Ind and Ds.

TF cell number at the larval-pupal transition stage approximately
equals adult ovariole number in Drosophila

Ovariole morphogenesis depends on the proliferation and differ-
entiation of somatic gonad cells during early larval stages, and
subsequent terminal filament (TF) formation during later larval stages
(Fig. 2A). We previously showed that adult ovariole number between
the cosmopolitan species D. melanogaster and D. yakuba is correlated
with the number of a specific ovarian cell type, TF cells, at the LP stage
(Sarikaya et al., 2012). Here we asked whether a difference in TF cell
number also explained ovariole number differences in intraspecies
and ecological specialist species comparisons. We found that in both
Ind and Ds, TF number at the LP stage determines adult ovariole
number (Fig. 2B). Previous studies had suggested that TF cell number
per terminal filament or TF cell size might influence TF number and
thus ovariole number (Hodin and Riddiford, 2000). We examined
both of these parameters and found that neither was sufficient
to account for ovariole number differences between the lineages
(Fig. S1). Both TF number and TF cell number at the LP stage are thus
robust predictors of ovariole number within and between Drosophila
species, and also among Drosophila species that occupy varying
ecological niches (Fig. 2C). We also tested the hypotheses that the
TF cell number variation between these lineages was due to overall
growth differences of the entire fly or of the ovary, or to differences in
germ cell number. We found that neither hypothesis was supported.
Neither germ cell number at any pre-LP stage of development
(Figs. 3A and S2A) nor ovary size (Figs. 3B,C, and S2D and E) nor
body size (Figs. 3D and S2B) was significantly correlated with adult
ovariole number or TF cell number. The Ds ovary is significantly
smaller than the OR ovary (Figs. 3B and C) and contains fewer TF cells
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Fig. 2. Reduced ovariole number within and between Drosophila species is a result of reduced terminal filament cell number: (A) Schematic of ovary development and
ovariole formation (see text for details). (B) Mean adult ovariole number (solid bars) and mean LP stage terminal filament (TF) number (stippled bars) in all three lineages.
(C) Mean TF cell number at LP stage in all three lineages. In (B) and (C), n=number of ovaries analyzed (in (B), n=x, y are number of ovaries analyzed for ovariole number
(x) and TF number measurements (y) respectively), error bars show 95% confidence interval, **p < 0.001.
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Fig. 3. Adult body size, germ cell number, and larval ovary size do not predict TFC number: (A) number of germ cells and TF cells from LO to LP stage in OR, Ind and Ds. Each
point shows germ cell and TF cell counts from a single individual. (B) Trace of optical cross-section through the widest point of an ovary of each lineage. (C) Mean larval
ovary volumes for all three lineages. Error bars show 95% confidence interval, **p < 0.001. (D) Relative proportions of adult body size (yellow shades) LP stage ovary volume
(blue shades), total ovarian somatic cell number (red shades) and TF cell number (gray/white/black bars) for all three lineages. For each parameter, value is normalized to
the corresponding OR value.

(Figs. 2C and S2D). However, the Ind ovary is slightly bigger than the
OR ovary (Figs. 3B and C) yet has significantly fewer TF cells (Figs. 2C
and S2D). This suggests that in Drosophila, specific mechanisms exist

-

. TF cells

. % 08
for precise control of TF cell number, leading to lineage-specific .gé' .apical cells

ovariole number. 2o

5% 0.6
A constant proportion of anterior somatic ovarian cells are specified 5 %

as TF cells o 04
$F

At the LP stage, somatic cells of the ovary lie both anterior and =g 02

posterior to germ cells (Fig. 2A). TF cells are derived exclusively from
the anterior cell population. We asked if the three Drosophila lineages 0

specified different proportions of TF cells from anterior cells. We Ind OR Ds
found that the total number of anterior cells is different among n=10 n=10 n=10
lineages (p < 0.05), but across all three lineages, a similar proportion
of anterior somatic cells differentiate into TF cells (p > 0.05; Fig. 4).
This suggests that anterior somatic cell number is the key parameter
that determines TF cell number. We therefore investigated the
developmental origin of anterior cells, and whether decreased TF
cell number in Ind and Ds compared to OR is a consequence of the
same or different developmental mechanisms.

Fig. 4. Anterior somatic cell number, and not germ cell number, predicts TF cell
number in OR, Ind, and Ds. Mosaic plots of proportions of the two anterior cell
types, TF cells (black) and apical cells (gray) at LP stage in all three lineages. Bar
width is proportional to total cell number in a given lineage.

division before hatching (LO), resulting in a small gonad primor-
dium in the first larval instar. Somatic gonad cells proliferate and
remain largely morphologically undifferentiated until later larval
stages. During mid-third instar, a group of anterior somatic cells
called “swarm” cells (Couderc et al., 2002) migrate laterally past
the germ cell cluster towards the posterior of the ovary (Figs. 2A
and S3). Once they are posterior to the germ cells, somatic cells

A reduced number of somatic gonad precursor cells established
during embryogenesis leads to reduced TF cell number in Ds

Ovarian development begins during embryogenesis when a

small number of somatic gonad precursor (SGP) cells are specified
in the mesoderm of abdominal parasegments 10-12 (Boyle and
DiNardo, 1995) (Fig. 2A). SGP cells undergo up to one mitotic
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differentiate to form the interfollicular stalk, basal stalk, and basal
cells in later larval and pupal development (Couderc et al., 2002).
A subset of the cells that remain anterior to the germ cells express
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Engrailed and become TF cells (Bolivar et al., 2006; Godt and
Laski, 1995). By the LP stage, anterior somatic ovary cells are thus
divided into two cell populations: cells that express Engrailed (TF
and cap cells), and those that do not (apical cells, which will
migrate posteriorly between TF stacks to delineate individual
ovarioles). We counted the number of gonadal cell types through-
out ovary development in OR, Ind, and Ds. The number of
SGP cells in Ds LO larvae is significantly smaller than in OR
(p < 0.001; Figs. 5A, A’ and S4A, A’), and the pool of somatic gonad
cells remains comparatively smaller throughout development
(Fig. S4A). Importantly, this difference is specific to the somatic
gonad and does not reflect a reduction in primordial ovary size as
a whole, as LO germ cell number is similar across all three lineages
at this stage (Figs. S4B, B'). As a result, Ds has a reduced number of
all somatic cell types, including TF cells, at the LP stage (TF cells:
p <0.001; apical cells: p <0.001; posterior cells (formerly swarm
cells): p<0.001; Figs. 5B, B, C, C'. The same proportion of
“swarm” cells migrate to the posterior in both OR and Ds
(p>0.05; Fig. 5C). Taken together, these data show that the
developmental basis of evolutionary reduction in Ds ovariole
number is primarily a change in the number of SGP cells initially
established during embryogenesis.

Changes in ovarian morphogenesis during late larval stages lead to
reduced TF cell number in Ind

In contrast to what we observed in Ds, SGP cell number is not
significantly different between Ind and OR (p=0.95; Figs. 5A, A’
and S4A, A’). Somatic cell proliferation rates between Ind and OR
are similar (Fig. S4A), and both lineages reach similar numbers of
total somatic cells by the LP stage (p=0.27, Figs. 5B, B’). We
therefore examined swarm cell migration and anterior/posterior
somatic cell allocation in these ovaries. We found that signifi-
cantly more swarm cells migrate to the posterior of the ovary in
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Ind than in OR (p <0.001; Figs. 5C, C’). As a consequence, a
significantly smaller proportion of cells are allocated to anterior
cell fates in Ind than in OR (p <0.001; Figs. 5C, C'). Because the
same proportion of anterior cells become TF cells in these strains
(Fig. 4B), we conclude that differences in swarm cell migration
cause the observed reduction in Ind TF cell number relative to OR.
These data indicate that Ind ovariole number reduction proceeds
through different developmental mechanisms than those operat-
ing in Ds: rather than a difference in embryonic SGP cell establish-
ment, in Ind descendants of the same initial number of SGP cells
are allocated to specific cell fates in dramatically different ways.
Notably, the variations in ovarian development occur at very
different stages in Ds and Ind, but the final effect on TF cell
number is nonetheless the same.

Loss of bab2 function in D. melanogaster reduces TF cell number by
affecting ovarian morphogenesis during larval stages

Because these two developmental events occur at different
developmental times and involve distinct cellular behaviors, we
hypothesized that different genetic mechanisms could direct
these developmental processes independently of one another.
Quantitative genetics approaches to ovariole number variation
have implicated different loci linked to interspecies (Coyne et al.,
1991; Orgogozo et al.,, 2006) and intraspecies (Bergland et al.,
2008; Wayne et al., 2001; Wayne and Mcintyre, 2002) variation.
However, few candidate genes have been suggested and none of
the genes contained in these loci have yet been tested function-
ally for a role in ovariole number. We therefore revisited these
data in light of our new developmental data on the differences
between ovarian development in Ind, Ds and OR.

We first looked for candidate loci that might play a role in
ovarian morphogenesis, specifically swarm cell migration. A QTL
study examining ovariole number in recombinant inbred lines of
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D. melanogaster (strains distinct from those used in this study)
identified a major effect locus that contains the bric-d-brac locus
(Bergland et al., 2008), which encodes for the two genes bab1 and
bab2 (Couderc et al., 2002). Both genes are expressed in the late
larval ovary, are not expressed in the embryonic gonad, and play a
role in ovarian morphogenesis (Godt and Laski, 1995; Sahut-
Barnola et al., 1995). Because bab2 is highly expressed in swarm
cells at the time of their migration (Couderc et al.,, 2002), we
hypothesized that specifically reducing bab2 function in the
somatic ovary might affect cell migration behavior and conse-
quently TF cell number. We used the bab:GAL4 driver (Cabrera
et al,, 2002), which is expressed in somatic cells of the larval ovary
and most strongly in anterior somatic cells, to knock down bab2
function in these cells via RNAI (Fig. 6A). bab:GAL4 > bab2R™4 did
not alter the number of SGP cells specified relative to controls, OR,
or Ind (p=0.37, 0.88, 0.85, respectively; Fig. 6B). However, we
found that in bab:GAL4 > bab2®™* ovaries, swarm cell migration
was incomplete by the LP stage (Fig. 6A) and the number of
swarm cells was significantly higher than controls (p < 0.001;
Fig. 6C) of swarm cells were affected. We counted all cell types in
these ovaries at the LP stage to quantify the effects on anterior/
posterior somatic cell allocation, and found that bab2 knockdown
resulted in a significantly greater proportion of posterior cells at
the expense of anterior cells (p <0.001; Fig. 6C). Interestingly,
average anterior/posterior proportions were nearly identical to
those in Ind (p<0.001; Figs. 5C and 6C). The proportion of
anterior cells that became TF cells was similar to all three wild
type lineages and bab2®*; + controls (p=0.13 (Ind), 0.40 (OR),
0.76 (Ds), 0.02, respectively; Fig. S5A).

Because bab also plays a role in the process of TF cell stacking to
form TFs (Godt and Laski, 1995), bab:GAL4 > bab2R®™4i ovaries
ultimately fail to make normal TFs or ovarioles. However, as a
consequence of reduced anterior cell number, TF cell number was
reduced in bab:GAL4 > bab2RNA' ovaries compared to controls
(Fig. S5B), suggesting that TF number and adult ovariole number
would also be reduced in these females. These results show that
changes in bab2 function can influence TF cell number by affecting
swarm cell migration, thereby altering the anterior/posterior
proportioning of somatic ovary cells. Importantly, body size was
unchanged in bab:GAL4 > bab2*"4! females compared to controls
(p=0.64; Fig. S5C), demonstrating that ovariole number can be
changed independently of body size. These phenotypes mimic the
critical developmental differences during larval development that
underlie ovariole number differences between OR and Ind, while
leaving SGP cell establishment in embryogenesis unaltered.

o
bab2™i+ bab:GAL4>>bab2™ InR*/+ InRE%6¢28 3
Q
2
i &
3
53
58
2
E
3
—_ £
late L3 LP LP

TF# 21.9%25

Hoescht

19.2% 2.1 11.0%1.2

n=12

N4+ bab:GAL4

9/2/20, 7:52 AM

D.A. Green II, C.G. Extavour / Developmental Biology 372 (2012) 120-130

Loss of InR function in D. melanogaster reduces TF cell number by
affecting SGP cell establishment

We next examined previous QTL analyses for genes that might
affect TF cell number by affecting SGP cell number. The Drosophila
Insulin receptor (InR) gene emerged as a top candidate for
investigation. InR is contained within a large-effect locus linked
to ovariole number difference between D. simulans and D. sechellia
(Orgogozo et al., 2006). The D. sechellia strain used in that QTL
study (DSSC #14021-0248.07) was collected in the same year
(1980) and at the same location (Cousin Island, Seychelles) as the
strain used in the present study (DSSC #14021-0248.25), which is
the strain used to construct the BAC library for genome sequen-
cing (Drosophila 12 Genomes Consortium, 2007). InR is the single
insulin-like peptide receptor in Drosophila that mediates the
insulin signaling pathway (Petruzzelli et al., 1986), a major
regulator of cell proliferation and body size in animals
(Goberdhan and Wilson, 2003). Reduced insulin signaling in
Drosophila leads to reduced body size as a consequence of
reductions in both cell number and cell size (Bohni et al., 1999;
Chen et al., 1996; Shingleton et al., 2005), but patterning and
morphogenesis programs remain intact. Moreover, loss-of-
function mutants in the InR substrate chico have reduced adult
ovariole number (Richard et al., 2005; Tu and Tatar, 2003).

We hypothesized that flies with reduced insulin signaling
activity would have a lower adult ovariole number due to a
reduced number of SGP cells specified during embryogenesis,
thereby reducing TF cell number. We confirmed that InRE%/¢%5
loss-of-function trans-heterozygotes contain significantly fewer
TFs (p < 0.001; Fig. 6A) and TF cells (p < 0.001; Fig. S5B) at the LP
stage compared to heterozygous controls (either InRf’%/+ or
InR®“?>/+ ) and OR. Consistent with our hypothesis, we found that
SGP cell number at the LO stage was significantly smaller in InRE'¥¢%>
compared to OR (Fig. 6B). In heterozygotes both InR alleles had
significantly reduced SGP cell number (p < 0.005; Fig. 6B) and TF
cell size (p<0.001; Fig. S5D), but TF cell number (p=0.31;
Fig. S5B) and TF number (p=0.72; Fig. 6A) were not significantly
different from OR. TF cell size was also reduced in InRE'%/¢¢%>
trans-heterozygotes compared with controls and OR (Fig. S5D),
but as observed for lineage-specific cell size differences (Fig. S1B),
this did not account for the reduction in TF number (Fig. 6A).
Swarm cell migration was not affected, so that the anterior/
posterior proportions of somatic cells were similar between
InRE19/GC25 and heterozygote controls (36.6% anterior/63.4% pos-
terior vs. 40.6% anterior/59.4% posterior respectively, p < 0.05)
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InRE' or InR°“?>/TM3, and InRF'?/InR°“?> at LP stage, except for bab2®™; + shown at late-third instar to visualize swarm cell migration. All images are maximum
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but significantly different compared to Ind (28.1% anterior/71.9%
posterior, p < 0.005) and bab:GAL4»bab2RN4i (28.2% anterior/71.9%
posterior, p < 0.01; Figs. 5C and 6C). We did observe that in InRE'¥/¢25
the proportion of anterior cells that differentiated into TF cells
was elevated compared to controls and all three wild type
lineages (controls: p<0.01; OR, Ind: p<0.001; Ds: p <0.005;
Fig. 6C), accounting for the apparently significant difference
(p < 0.05) in the overall anterior/posterior proportioning of cells
in InRE¥/¢?> compared to heterozygote controls. TF cell number
per TF stack was also increased relative to controls (p <0.001;
Fig. S5E). Consistent with recent reports on a role for hormonal
signaling in germ line stem cell niche formation (Gancz et al.,
2011), these observations suggest that in addition to controlling
cell proliferation, insulin signaling may also play a role in TF cell
fate specification and morphogenesis. Nevertheless, these
changes in TF cell allocation and morphogenesis do not compen-
sate for the reduced number of anterior somatic cells in InRE?/¢25
ovaries (Fig. S5A), so that the ultimate result is specification of
fewer TF cells and fewer TFs (Figs. 6A and S5B). Therefore,
reduced insulin signaling lowers ovariole number principally
through reducing the number of SGP cells established during
embryogenesis, rather than through changes in larval ovarian
development. In this way, reduced insulin signaling phenocopies
the essential developmental differences that cause ovariole num-
ber difference between OR and Ds.

Discussion

Convergent evolution of reduced ovariole number by distinct
developmental mechanisms

We have shown that independent instances of evolutionary
reduction in ovariole number can result from alterations in
different developmental processes (Fig. 7). In Ds, a smaller
somatic gonad primordium than that of OR is established by
hatching, although LO germ cell number and all other later
ovariole developmental processes that we examined are similar
between the two species. Ds therefore has fewer of all somatic cell
types of the ovary, including TF cells, and as a consequence forms
fewer TFs and fewer ovarioles. In contrast, the LO gonad of Ind is
initially the same size as that of OR. During larval development, a
smaller proportion of the somatic gonad cells in Ind are allocated
to TF fate due to differences in somatic cell migration within the
gonad. As a result, fewer TFs and fewer ovarioles are formed.

Different genetic mechanisms independently regulate these
different developmental processes in D. melanogaster. Reduction
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Fig. 7. Different developmental mechanisms underlie ovariole number evolution.
Lineages studied in detail in this report are shown in bold. Independent reductions
in ovariole number (blue text) evolved in the melanogaster subgroup via distinct
developmental mechanisms that affect different cell types and developmental
stages.
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of insulin signaling pathway activity results in fewer LO gonad
primordium cells and fewer TFs, but does not affect migration
behaviors later in ovarian development. In contrast, loss of bab2
function in somatic gonad cells alters their migration behaviors,
but does not affect LO gonad size. Taken together with QTL linkage
of InR and bab to ovariole number variation, this suggests that
changes in distinct genetic pathways may underlie modular
evolution of ovariole number in Drosophila, which could contri-
bute to the high evolutionary lability of this trait.

Our results suggest that previous QTL analyses may have
identified non-overlapping loci that contribute to ovariole num-
ber variation in Drosophila because the lineages under comparison
diverged in different developmental mechanisms that underlie
ovariole number determination. One interesting question is
whether or not patterns of intraspecies versus interspecies
ovariole number variation exist in Drosophila. We note the
interesting agreement between the developmental differences
we observe between OR, Ds, and Ind, and their candidate genetic
bases suggested by previous inter- and intraspecies QTL analyses
and the present analyses. LO somatic cell specification, the
principal developmental process accounting for ovariole number
difference between OR and Ds, is regulated by InR, which was a
major QTL locus from an interspecies analysis (Orgogozo et al.,
2006). Larval ovary morphogenesis, differences in which underlie
the ovariole number difference between OR and Ind, is regulated
by bab2, and the bab locus including bab2 was a major QTL locus
from an intraspecies analysis (Bergland et al., 2008). Our pre-
liminary analysis of additional lineages suggests that the genetic
basis for change in this trait may show some consistency between
and within Drosophila species. We have found that different
developmental processes produce the TF cell number differences
underlying ovariole number differences in D. yakuba (Sarikaya
et al.,, 2012) and in the D. melanogaster France strain, both of
which have fewer ovarioles than OR (Table 1). The size of the LO
ovarian primordium is significantly smaller than OR in D. yakuba
(Fig. S6; p<0.001), as in Ds. This suggests that ovarian primor-
dium size differences contribute to ovariole number variation
between species, and that SGP specification may be a species-
specific trait. However, France LO primordium size is similar to
that of OR (Fig. S6; p=0.025), as we reported here for Ind,
indicating that changes in larval ovary development are respon-
sible for reducing ovariole number in France compared to OR.
Thus among these D. melanogaster strains, larval developmental
processes, rather than embryonic ones, are a major source of
variation in ovariole number.

Multiple developmental mechanisms affecting ovariole number may
provide different opportunities for evolutionary change

Because ovariole number is determined by TF number at the
larval-pupal transition, it is a complex trait that requires multiple
developmental processes: embryonic establishment of the
somatic gonad, proliferation during larval life, migration of a
specific proportion of somatic gonad cells, differentiation of some
anterior somatic cells into TF cells, and finally TF cell stacking to
form TFs (Fig. 2A). Each of these steps is directed by very different
mechanisms, each of which could conceivably be the target of
evolutionary change. We propose that evolutionary change in
ovariole number may be particularly likely to proceed via a
diverse set of developmental and possibly genetic mechanisms
because of its cell type complexity. The ovary is composed of
multiple cell types that each follows an individual developmental
program, and yet must be integrated to form a functional organ.
The Drosophila sex combs are a similar example of a complex
multicellular structure whose convergent evolution can proceed
through multiple different developmental mechanisms (Tanaka
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et al,, 2009). Interestingly, both ovariole number and sex comb
morphology show high evolutionary lability, perhaps indicating
that complex traits provide a broad “evolutionary change land-
scape” that allows for rapid diversification via multiple routes.

In many cases where convergent morphological traits evolve
via changes in the same genetic mechanisms, these morphological
traits are terminal differentiation aspects of a single type of
somatic cells. For example, the degree of expression of a pigment
synthesis pathway (Protas et al., 2006), or the accumulation of
cortical actin that determines the formation of an epidermal
bristle (Sucena et al.,, 2003), are likely to be processes that are
cell-autonomous and do not require significant coordination with
other cell types. The developmental processes operating prior to
this differentiation will surely require cooperation of multiple cell
types, but a single cell expresses pigment or develops a bristle
autonomously. We speculate that this developmental feature may
facilitate convergent evolution through mutations in the same
developmental pathway. In contrast, ovarioles are multicellular
rather than cell-autonomous structures, and as such evolution
may have many “opportunities” to change this and other complex
traits through multiple genes directing several distinct processes
at different times in development.

Towards the genetic basis of ovariole number variation

By characterizing the developmental basis of phenotypic
differences in a rapidly evolving trait, we were able to suggest
novel specific hypotheses regarding particular candidate genes
within previously identified QTL regions associated with ovariole
number variation. This suggests that for many complex traits, a
better understanding of the underlying developmental processes
can be a fruitful way to interpret the results of QTL analyses and
enhance their utilities for functional studies, by identifying
relevant candidates and excluding others. Indeed, such an inte-
grative approach has previously succeeded in identifying genetic
loci of evolutionary change in pelvic reduction between lineages
of threespine sticklebacks (Shapiro et al., 2004). Our functional
experiments in D. melanogaster revealed two different genes that
can regulate ovariole number in different ways. Loss of function of
InR and bab not only reduce ovariole number in D. melanogaster,
but do so by affecting the same developmental mechanisms that
reduce ovariole number in Ds and Ind, respectively. The data
shown here provide, to our knowledge, the first functional test of
specific candidate genes within QTL linked to ovariole number
variation (Bergland et al., 2008; Orgogozo et al.,, 2006; Wayne
et al., 2001), and suggest these genes as potential causal loci for
change in this trait. We speculate that evolution at the bab locus
may underlie reduced ovariole number in Ind, while changes of
InR function could be responsible for the evolution of reduced
ovariole number in Ds. Evolutionary changes at the bab locus have
been previously implicated in the evolution of adult abdominal
pigmentation and trichome patterns in Drosophila species
(Gompel and Carroll, 2003; Kopp et al., 2000), but the nature of
the selective pressures acting on this locus are poorly understood.
bab plays multiple roles in development, including TF formation
(Godt and Laski, 1995; Sahut-Barnola et al., 1995), leg develop-
ment (Couderc et al, 2002), and a role in somatic ovary cell
migration that we describe here for the first time. The role of bab
in ovariole number is likely to have a direct impact on fertility and
therefore fitness. It may be that ectodermal patterning variation
resulting from bab modification is a secondary effect of selection
on bab’s role in ovarian morphogenesis, or vice versa.

With respect to InR, several lines of evidence suggest that
evolutionary change in insulin signaling (INS) genes plays
an important role in ovariole number variation. First, consistent
with its QTL linkage to interspecies ovariole number variation
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(Orgogozo et al., 2006), the specific developmental processes
affected by InR loss of function correspond to those that vary
between Drosophila species. Second, clinal variation in InR alleles
has been observed in natural populations of D. melanogaster
(Paaby et al., 2010), and ovariole number also exhibits clinal
variation (Boulétreau-Merle et al., 1992; Collinge et al.,, 2006;
David and Bocquet, 1975; Delpuech et al., 1995; Gibert et al.,
2004; Paaby et al., 2010; Schmidt et al., 2005; Wayne et al., 2005).
Third, analysis of clinal alleles reveals evidence of positive selec-
tion at the InR locus (Paaby et al., 2010). Finally, different organs
are known to respond differently to changes in INS in Drosophila
(Shingleton et al., 2005; Tang et al., 2011), providing mechanisms
for putative organ-specific responses to changes in a global
hormonal pathway, and consistent with the altered correlations
between ovariole number and overall body size between species
(Bergland et al., 2008; Hodin and Riddiford, 2000, this report).
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