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Evolutionary developmental biology focuses on understanding the origin and evolution
of extant biological variation, and the genetic basis for this variation. The genetic toolkit
appears largely finite across animals, such that a combination of regulatory evolution,
gene recruitment (co-option) and genetic modularity often allow morphological and
developmental diversity to arise. Here we summarize a number of observations from
across animals, which together suggest that many genes and gene product interaction
“modules” originally characterized for their role in the germ line also have neural roles.
We explore potential explanations for this observation, noting that in the context of the
germ line, these genes appear to have molecular and biochemical properties that make
them well-suited to breaking symmetry within cells. The resulting asymmetry is often
caused by gene products co-localizing asymmetrically to sub-cellular, non-membrane
bound, electron dense compartments known as ribonucleoprotein (RNP) granules.
RNP granules contain high concentrations of translationally quiescent messenger RNAs
and proteins and are thought to act as hubs of localized translational control. We
propose that the use of strict translational control, which may be achieved via molecular
processes important for RNP granule formation and/or small RNA-related processes, is
an important property of and a commonality between the germ line and nervous tissues,
and helps explain, at least in part, the close relationship between these two tissue types.

Keywords: genetic toolkit, co-option, modularity, developmental function evolution, germ line, nervous system,
RNP granules, pleiotropy

INTRODUCTION

Understanding the genomic basis of extant biological variation over evolutionary time scales has
been the main focus of modern evolutionary developmental biology (evo-devo) research. In the
pre-genomic era, it was unclear to what extent genes unique to an organism were the basis of their
morphological, cellular and biological diversity (King and Wilson, 1975). Over the years, however,
a large body of evo-devo work has led to the realization that much of the biological variation in
extant animals has evolved based on an ancestral genetic toolkit (Peterson and Davidson, 2000).
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Genes in such shared ancestral toolkits are often conserved
both in sequence and developmental function across animals
(e.g., Hox genes) (Hrycaj and Wellik, 2016). In other cases,
conserved genes have been co-opted for additional, distinct
biological roles, leading to pleiotropic gene functions (e.g., distal-
less, yellow) (Panganiban et al., 1997; Gompel et al., 2005;
Moczek and Rose, 2009; Khila et al., 2012). Both scenarios
ultimately contribute to morphological diversity between species,
within species, and between cell types within an organism,
underpinned by a combination of differences in developmental
gene regulation and modularity. Pleiotropy is widespread in
genomes, can contribute to phenotypic variation, and may occur
through a variety of molecular mechanisms (Guillaume and
Otto, 2012), including alternative splicing, different substrate
or binding partner affinities, localization to different cellular
compartments or tissues, or the same gene product having more
than one distinct biochemical property. Barring the extreme cases
of “housekeeping” genes (usually ubiquitously expressed) and so-
called “luxury” genes (expressed in only one tissue type) (King
et al., 2013), most animal genes likely exhibit some degree of
pleiotropy (Hodgkin, 1998).

Over the past two decades, multiple primary data observations
and some synthetic overviews of the literature (see for example
Broadus et al., 1998; Roegiers and Jan, 2000) have hinted at a
potentially underappreciated example of pleiotropy that we wish
to draw further attention to with this review: namely, that a
number of genes sometimes dubbed “germ line genes” based on
the initial primary characterization of their roles in the germ lines
of animals, also have roles in the development and/or functioning
of the nervous system. For example, on a genome-wide scale,
tissue-specific transcriptome studies in both humans and mice
have shown that the testes and nervous system are two tissues
that share a larger overlap in their gene expression profiles and
proteomes than they do with any other tissue types within the
animal (Guo et al., 2005). Here we gather evidence for this dual
tissue expression pattern across multiple metazoans. In cases
where “germ line genes” are documented as playing a neural
role in one species, we ask whether there is evidence that these
genes play any neural role in additional species, and whether they
share the same set of interactors. We provide possible molecular
mechanistic explanations and suggest that these observations
may be explained by co-option of pre-existing molecular
interactions to new developmental contexts. Both germ cells and
neurons use subcellular compartmentalization of gene products
as a mechanism for proper cellular functioning. Neurons
are highly compartmentalized cells, and localized translational
control within and between synapses is an important mechanism
regulating neuronal function (Holt et al., 2019). Likewise,
germ cells often require subcellular localization of specific gene
products for normal functioning of germ cells or patterning of
early embryos, which can be achieved by localized translational
control (Pushpa et al., 2017). In addition, both these tissues rely
on small RNAs for proper functioning. Small RNAs are important
for maintaining the genomic integrity of the germ line and also
have key roles in memory and synaptic plasticity in the nervous
system of animals (Saxe and Lin, 2011; Posner et al., 2019).
Thus, we aim to summarize and synthesize data that may be

relevant to understanding both the molecular and cellular basis of
pleiotropy in this specific context. More generally, this approach
may help shed light on the origins of cell type diversity and
evolutionary novelty.

Genes With Shared Roles in the Germ
Line and Nervous System
In the following sections, we present evidence from primary
literature for genes best known for their role in the germ line,
that are also expressed in the nervous system, either singly or in
groups of gene products with conserved molecular interaction.
Wherever possible, we present currently available data for the
functions of these genes in both these tissues. For each example,
we briefly summarize their roles in the germ line and in the
nervous system (Table 1), providing a list of reported molecular
interaction partners in both tissues (Table 2). In cases where, to
our knowledge, no molecular interaction data are available, we
point out evidence of their co-expression, acknowledging that
co-expression may not reflect conserved molecular interactions.
This gene list is not exhaustive, as it is necessarily limited to
those that, to our knowledge, have been specifically examined in
the context of both tissue types across animals. For each gene
discussed, we note whether it predates animals or not, based on
OrthoMCL-DB predictions (Chen et al., 2006). Because we aim
to point out conserved molecular interactions reported in both
cell types, we discuss those genes with more abundant co-IP and
other interaction data in both germ line and nervous system first,
and end with genes for which data are available primarily for only
one tissue type. We discuss genes in groups, to indicate reported
conserved molecular interactions between their gene products.

staufen (stau) and barentsz (btz)
staufen (stau) was first identified in a maternal effect genetic
screen for Drosophila melanogaster mutants with anterior-
posterior body polarity defects, while barentsz (btz) was identified
in a female sterile chromosome screen for mutants with defects
in localization of Stau protein (Schüpbach and Wieschaus, 1986;
van Eeden et al., 2001). Stau belongs to a conserved family of
animal proteins (Chen et al., 2006) that contain multiple double-
stranded RNA binding domains, and stau orthologs are present in
bilaterian outgroups, protostomes and deuterostomes (Heraud-
Farlow and Kiebler, 2014). btz genes also appear to be animal-
specific (Chen et al., 2006), and Btz protein is a component of the
exon junction complex (Ariz et al., 2009), which regulates spliced
mRNAs (Bono et al., 2006).

stau and btz in the germ line
During D. melanogaster oogenesis, Stau and Btz localize to
the cytoplasm at the posterior of the oocyte, where they both
have a role in primordial germ cell (PGC) specification and
establishment of the anterior-posterior axis of the embryo (St
Johnston et al., 1991; van Eeden et al., 2001). Stau is required
for the posterior localization and translation of the mRNAs of
oskar (osk), another gene whose products likely have evolved
similar molecular interactions in both germ line and nervous
systems [see “oskar (osk), nanos (nos), piwi and vasa (vas)”
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TABLE 1 | Summary of germ line and nervous system roles of genes discussed in the text, listed here in alphabetical order.

Gene name(s) Molecular feature(s) and function(s) Germ line functions Nervous system functions

barentsz and staufen Stau: contains double RNA binding
domains
Btz: exon junction complex component

Germ cell specification, axial patterning Plasticity and learning, mRNA trafficking, mRNA
localization and translation, spine
morphogenesis, asymmetric cell division and
differentiation of neuroblasts

boule and twine Bol: RNA-binding protein
Twe: putative Cdc25-type tyrosine
phosphatase

Gametogenesis in males Axon and dendrite morphogenesis, neuronal
development and neuronal communication

CPEB RNA binding protein implicated in mRNA
translation and localization via regulation of
mRNA poly(A) tail length

Establishment of egg polarity and
cytoskeletal network, germ cell
development, meiosis entry, oskar and
gurken translation and localization

Synaptic plasticity, neurogenesis, learning and
memory, asymmetric cell division, RNA
trafficking, translational control, regulation of
mRNA poly(A) tail length

FMRP RNA binding protein Germ cell proliferation, maintenance and
gamete development

Synaptic plasticity, neurogenesis, dendrite
morphogenesis, RNA trafficking, translational
control and regulation of mRNA poly(A) tail
length

oskar binds RNA (OSK domain), interacts with
Vasa (LOTUS domain); predicted
disordered region

Germ cell specification, nucleator involved
in germ plasm assembly and posterior
patterning

Neuroblast divisions in crickets; larval dendrite
morphogenesis in D. melanogaster

nanos and pumilio Nos: contains C2H2 Zn-finger domain;
RNA-binding protein
Pum: RNA-binding protein

Posterior embryonic patterning, translation
inhibition

Long term memory, dendrite morphogenesis

piwi PAZ-PIWI domain family member Germ line development, gametogenesis,
transposon silencing, small RNA
biogenesis, in pluripotency, pan-germ line
marker

Small RNA biogenesis, transposon silencing,
mRNA translational control, long term memory

vasa ATP-dependent DEAD box RNA helicase Segregation and maintenance of germ line,
pan-germ line marker, pluripotency, nuage
component involved in modeling RNP
complexes, RNA metabolism, small RNA
biogenesis, chromosome condensation

In crickets, evidence for roles in neuroblast
divisions

below] mRNA, and Stau and Btz form a complex and move
together during this posterior localization event (van Eeden
et al., 2001). Additionally, btz null mutants show defects in Stau
protein and osk mRNA localization to the posterior of the oocyte
(van Eeden et al., 2001).

stau and btz in the nervous system
Evidence from multiple animals suggests that Stau and Btz
function together in neuronal cells via mechanisms similar
to those observed in the germ line. Stau is concentrated
in ribonucleoprotein (RNP) granules within D. melanogaster
neurites in the larval nervous system, where it co-localizes
with Btz and dFMR1 (Barbee et al., 2006). Such Stau-Btz-
containing neuronal granules also contain molecules that are
found in yeast and mammalian somatic P-bodies (e.g., Dcp1p,
Xrn1p), suggesting that neuronal and germ line Stau-containing
granules may be similar to somatic P-bodies in molecular
composition (Barbee et al., 2006). Stau is also present in the
D. melanogaster neuromuscular junction (NMJ). At the NMJ, it
is localized to the post-synaptic compartment, where it regulates
localization and translation of coracle (cora) mRNA (Gardiol
and St Johnston, 2014). cora in turn promotes synaptic bouton
formation, and accordingly loss of stau leads to a reduction
in synaptic bouton number (Macchi et al., 2003). The same
Stau domain that is required in oocytes for the translation
and localization of the mRNA of osk [see oskar (osk), nanos

(nos), piwi and vasa (vas) below] (Micklem et al., 2000), called
“dsRNA binding domain 5,” is also required for local cora
translation at the NMJ, and Cora protein fails to localize
to the NMJ in stau mutants lacking this domain (Gardiol
and St Johnston, 2014). Furthermore, Tropomyosin II, which,
like Stau, localizes osk to the oocyte posterior (Erdelyi et al.,
1995), is also required for cora’s NMJ localization (Gardiol and
St Johnston, 2014). Stau plays a critical role in asymmetric
neuroblast divisions (Jia et al., 2015) and long-term memory
formation in D. melanogaster (Dubnau et al., 2003), a role
that appears conserved in the mollusk Aplysia californica
(Liu et al., 2006).

In mouse and rat neurons, Stau is contained within RNP
particles distributed along the somatodendrites of hippocampal
neurons (Tang et al., 2001; Macchi et al., 2003). Btz also co-
localizes with Stau in these granular RNPs in hippocampal
neurons, and these two proteins co-immunoprecipitate from
doubly transfected Baby Hamster Kidney fibroblasts (Macchi
et al., 2003). Fritzsche et al. (2013) have recently reported a
protein interactome for Stau- and Btz-RNPs in the rat brain,
which includes some proteins also found in germ cells, such as
Pum [see “nanos (nos) and pumilio (pum)” below] and FMRP
[see “Fragile Mental Retardation Protein (FMRP), argonatue
(AGO) piwi and staufen (stau)” below]. In mice and rats, Stau is
implicated in spatial learning, novelty preference and explorative
behavior (Berger et al., 2017; Popper et al., 2018), and in
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TABLE 2 | Summary of selected gene products and their reported physical interactors in the germ line and in nervous system tissues, listed here in alphabetical order.

Gene Interactor Germ Line Nervous System References

Barentsz eIF4AIII Y2H, pull-down assay Co-IP Palacios et al., 2004; Fritzsche et al., 2013

Mago Nashi Co-IS Co-IP van Eeden et al., 2001; Fritzsche et al., 2013

Staufen Co-IS Co-IP van Eeden et al., 2001; Fritzsche et al., 2013

Cup Co-IS Wilhelm et al., 2003

Oskar Co-IS van Eeden et al., 2001; Fritzsche et al., 2013

Piwi Co-IS Fritzsche et al., 2013

FMRP Co-IP Fritzsche et al., 2013

Pumilio Co-IS Co-IS Vessey et al., 2006

Boule Orb2 Co-IP Xu et al., 2012

Pumilio Co-IS, Y2H, Co-IP Moore et al., 2003

CPEB Oskar Co-IS, Co-IP, pull down Chang et al., 1999; Rojas-Rios et al., 2015

Gurken Co-IS Davidson et al., 2016

Cup Co-IS, Co-IP Wong et al., 2011

FMRP Co-IS, Co-IP Co-IS Costa et al., 2005

Pumilio Co-IP Eddy, 1975

Boule Co-IP Knutson et al., 2017

Neuroguidin Co-IP Co-IS Jung et al., 2006

CaMKII Co-IS Huang et al., 2002

eIF4E Co-IP, Y2H Stebbins-Boaz et al., 1999

Cyclin B1 Co-IP Meijer et al., 2007

Maskin Co-IP, Y2H Co-IS Stebbins-Boaz et al., 1999; Huang et al., 2003

FMRP GLD Co-IP Kwak et al., 2008

Staufen Co-IP, Co-IS Barbee et al., 2006; Fritzsche et al., 2013

Pumilio Co-IS Barbee et al., 2006; Vessey et al., 2006

Nanos Co-IP Co-IS Barbee et al., 2006; Megosh et al., 2006

Piwi Co-IP Megosh et al., 2006

Argonaute-1 Co-IP Yang et al., 2007

Nanos Cup Y2H, Co-IP Verrotti and Wharton, 2000

Pumilio Co-IP Joly et al., 2013

Twine Co-IP Joly et al., 2013

Myosin Light chain Y2H, Pull-down assay Xu et al., 2010

Staufen Co-IS Co-IS Barbee et al., 2006

Oskar Homer Co-IP Babu et al., 2004

Staufen Y2H Breitwieser et al., 1996

Cup Y2H, Co-IP Ottone et al., 2012

Vasa Y2H Co-IS Breitwieser et al., 1996; Ewen-Campen et al., 2012; Jeske et al., 2015, 2017

Lasp Y2H, Pull-down assay Suyama et al., 2009

Par-1 in vitro Kinase assay Morais-de-Sa et al., 2013

Piwi Co-IS Co-IS Ewen-Campen et al., 2012

Piwi Vasa Co-IP Co-IS Megosh et al., 2006; Ewen-Campen et al., 2012

FMRP Co-IP Megosh et al., 2006

Kumo Co-IP Anand and Kai, 2012

Vreteno Co-IP Handler et al., 2011

Papi Y2H, Co-IP Liu et al., 2011

Pumilio Nanos Co-IP Joly et al., 2013

Twin Co-IP Joly et al., 2013

CPEB Co-IP Ota et al., 2011

DAZL Co-IP Ota et al., 2011

Maskin Co-IP Ota et al., 2011

Staufen Co-IS Barbee et al., 2006; Vessey et al., 2006

FMRP Co-IS Barbee et al., 2006; Vessey et al., 2006

Staufen Miranda Y2H, Co-IS Schuldt et al., 1998

Barentsz Co-IS Co-IP, Co-IS van Eeden et al., 2001; Macchi et al., 2003; Barbee et al., 2006; Fritzsche et al., 2013

MAPK Co-IP Nam et al., 2008

Oskar Y2H, Co-IS St Johnston et al., 1991; Breitwieser et al., 1996

Inscuteable Y2H Li et al., 1997

(Continued)
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TABLE 2 | Continued

Gene Interactor Germ Line Nervous System References

FMRP Co-IP, Co-IS Villacé et al., 2004; Barbee et al., 2006; Price et al., 2006; Fritzsche et al., 2013

Dynein Co-IP Villacé et al., 2004

Beta-actin Co-IP Villacé et al., 2004

Cdc42 Co-IP Villacé et al., 2004

Beta-tubulin Co-IP Villacé et al., 2004

Kinesin Co-fractionation Mallardo et al., 2003

Cup Co-IP Co-IS Barbee et al., 2006

Pumilio Co-IS Barbee et al., 2006; Vessey et al., 2006

Piwi Co-IP Fritzsche et al., 2013

Vasa dIF2 Y2H Carrera et al., 2000

Cup Y2H, Co-IP Ottone et al., 2012

Oskar Y2H Co-IS Breitwieser et al., 1996; Ewen-Campen et al., 2012; Jeske et al., 2015; Jeske et al., 2017

Cyclin B Co-IS Yajima and Wessel, 2011a

Methods used to provide evidence for indicated gene interactions are abbreviated as follows: Y2H (yeast two hybrid), co-IP (co-immunoprecipitation), co-IS (colocalization
in immunostaining). Genes discussed in the manuscript are indicated in bold.

humans Stau is required for normal dendritic arborization during
neuroblastoma cell differentiation in vitro (Peredo et al., 2014).
Interestingly, when expressed in vivo in D. melanogaster, GFP-
tagged mouse Btz localizes to the oocyte posterior, suggesting that
it can interact with D. melanogaster Stau (Macchi et al., 2003).
However, despite this colocalization with D. melanogaster Stau,
mouse Btz is unable to perform the function of D. melanogaster
Btz in localizing osk mRNA to the posterior of the oocyte
cytoplasm (Macchi et al., 2003), suggesting that not all Btz/Stau
functional molecular interactions are conserved across species.

stau and btz: additional relevant
expression data
stau is expressed or required in the germ line outside of fruit
flies as well. In zebrafish, morpholino-mediated knockdowns of
the stau paralogs stau1/2 abrogate the formation of Vasa-positive
PGCs (Ramasamy et al., 2006). In mice, stau mRNA is expressed
in oocytes and during meiosis in males (Saunders et al., 2000).
In human oocytes, immunofluorescence studies show that STAU
protein is present throughout all stages of oocyte maturation, and
that its subcellular localization changes throughout oogenesis,
initially dispersed throughout the cytoplasm and later localized
into large discrete granules at the cortex (De Santis et al.,
2015). As in D. melanogaster oocytes (St Johnston et al., 1991;
van Eeden et al., 2001), Stau localization to a specific region
of the Xenopus laevis oocyte cytoplasm is required to specify
PGCs (Yoon and Mowry, 2004). Human Staufen (STAU1/2) and
Barentsz (CASC3) are both expressed in multiple tissues outside
of the germ line and nervous system (Uhlen et al., 2015).

Fragile Mental Retardation Proteins
(FMRP), argonaute (AGO), piwi and
staufen (stau)
Fragile Mental Retardation Proteins (FMRP) are conserved RNA
binding proteins that may have origins predating animals, based
on the prediction of a putative ortholog in the green alga
Micromonas (Chen et al., 2006). FMRPs underlie human Fragile

X syndrome, which is an X-linked dominant disorder causing
mental retardation and cognitive impairment (Ashley et al., 1993;
Inoue et al., 2000). This defect is caused by an expansion of
a CGG trinucleotide repeat in the FMR1 gene, correlated with
transcriptional silencing and loss of the gene product FMRP
(Verkerk et al., 1991; Verheij et al., 1993). Mammalian FMRP
is a member of a small protein family consisting of members
FMRP, FXR1 and FXR2, all of which are RNA binding proteins
containing two K homology (KH) domains and one RGG box
(Siomi et al., 1995; Zhang et al., 1995). FMRP/FXR proteins also
contain protein-protein interaction and 60S ribosomal subunit
interaction domains (Ashley et al., 1993; Siomi et al., 1996; Wan
et al., 2000). FMRP is predominantly detected in the cytoplasm
of cells in multiple human tissues (Uhlen et al., 2015), including
neurons, glial cells, and spermatogonia, but can also be detected
in the nucleus (Devys et al., 1993; Verheij et al., 1993). The
presence of nuclear localization (NLS) and export (NES) signals
(Eberhart D. E. et al., 1996), suggest that it may function as a
nucleo-cytoplasmic shuttle protein for RNA. In vitro experiments
suggest that FMRP binds a selective but abundant fraction of
brain RNA, but little is currently known about the identity of
these targets (Ashley et al., 1993; Brown et al., 1998). FMRP
associates with polyribosomes (Khandjian et al., 1996; Tamanini
et al., 1996; Feng et al., 1997) and negatively regulates translation
(Laggerbauer et al., 2001; Li et al., 2001; Zhang et al., 2001). While
all three orthologs of the FMRP/FXR family are found in multiple
vertebrates, only one homolog, called dfmr1, has been reported in
D. melanogaster (Wan et al., 2000).

FMRP, AGO and piwi in the germ line
FMRP plays roles in germ line development in D. melanogaster
and mammals, in both cases via interactions with Piwi or
Piwi-related proteins of the Argonaute family (AGO). In
D. melanogaster Dfmr1 protein co-immunoprecipitates with
Ago1 in ovaries and in adult testes (Yang et al., 2007; Bozzetti
et al., 2015). Similarly, in embryos Dfmr1 forms a complex with
Piwi during the formation of the specialized cytoplasm, called
germ plasm, that ensures PGC specification in D. melanogaster
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(Megosh et al., 2006). In dfmr1 homozygous null mutants,
the ovaries contain fewer germ line stem cells (GSC) than
controls, suggesting that dfmr1 is required for GSC maintenance
(Yang et al., 2007). dfmr1 and piwi mutants show similar
phenotypes of defective pole plasm and reduced PGC number
(Megosh et al., 2006). In mice, FMR1 knockout mice display
macroorchidism, a disorder in which males have abnormally
large testes, in this case caused by an increased postnatal
proliferation of Sertoli cells (Slegtenhorst-Eegdeman et al.,
1998), which are associated with and required for correct
development of male gametes. In mouse testes and in human
embryonal carcinoma cell lines derived from testes, FMR1
and AGO1 regulate miRNA-383, implicating FMRP in small
RNA-mediated gene regulation in the mammalian germ line
(Tian et al., 2013).

FMRP, AGO, piwi and stau in the nervous
system
FMRP is implicated in multiple neuronal functions in fruit
flies and mice, including synaptic plasticity (Padmashri et al.,
2013; Feuge et al., 2019), dendritic morphogenesis (Feuge
et al., 2019), and olfactory learning and memory (Nimchinsky
et al., 2001; Bolduc et al., 2008; Sears et al., 2019). Some
studies report that homozygous FMR1 knockout mice display
defects in dendritic spine morphology (e.g., Nimchinsky et al.,
2001; Bolduc et al., 2008) [but see Feuge et al. (2019) for a
report of no abnormal dendritic spine morphology in FMRP
knockout mice]. FMRP also appears important for adult mouse
neurogenesis: FMR1 knockout mice show misregulation of
multiple genes expressed in adult neural progenitor cells (Liu
et al., 2018), increased neural progenitor cell proliferation and
incorrect neuronal fate specification (Luo et al., 2010), significant
reduction in hippocampal neurogenesis (Guo et al., 2011), and
reduced hippocampal-dependent learning (Guo et al., 2011).
Furthermore, in D. melanogaster, Dfmr1 and Ago1 are required
for the regulation of synaptic plasticity (McBride et al., 2005;
Bolduc et al., 2008; Sudhakaran et al., 2014). Dfrm1 loss
of function mutants show ectopic axon growth (Tessier and
Broadie, 2008), and trans-heterozygotes for dfmr1 and Ago1
have overgrown synapses and abnormally elaborate synaptic
terminals compared to wild type flies and single heterozygotes
(Jin et al., 2004). This phenotype is reminiscent of that of
homozygous FMR1 knockout mice, which some researchers
report have dendritic spines that are longer than controls
(Comery et al., 1997; Nimchinsky et al., 2001) [but see Feuge
et al. (2019)]. The molecular functions of FMRP in neurons
include trafficking RNA in both fruit fly (Estes et al., 2008)
and mouse (Antar et al., 2005; Dictenberg et al., 2008) neurons,
regulating length of the mRNA poly(A) tail (Bienkowski et al.,
2017), and local translational regulation in both dendrites
and cell bodies of neurons (Darnell et al., 2011; Darnell and
Klann, 2013). FMRP also co-immunoprecipitates with Stau in
rat neurons (Price et al., 2006), and complexes with Stau in
transfected human cells and differentiated human neuroblasts
(Villacé et al., 2004). An ortholog of FMRP has been identified
in the cnidarian Hydractinia echinata (HyFMR1), where it is

expressed in neural precursors and nerve cells in the mature
polyp (Guduric-Fuchs et al., 2004).

nanos (nos) and pumilio (pum)
nanos (nos) and pumilio (pum) were first identified in
genetic screens for D. melanogaster embryos with posterior
and abdominal specification defects (Lehmann and Nüsslein-
Volhard, 1987; Nüsslein-Volhard et al., 1987; Lehmann and
Nusslein-Volhard, 1991). Pum belongs to a conserved RNA-
binding protein family that is found across eukaryotes (Zamore
et al., 1997; Zhang et al., 1997; Gamberi et al., 2002; Chen et al.,
2006). Its signature PUF domain is named after D. melanogaster
Pumilio and the Caenorhabditis elegans translational regulator
FBF (fem-3-binding factor) (Zhang et al., 1997). PUF proteins
are implicated in post-transcriptional gene regulation (Wang
et al., 2018), stem cell maintenance (Lin and Spradling, 1997;
Forbes and Lehmann, 1998; Crittenden et al., 2002; Ariz et al.,
2009), axial patterning (Lehmann and Nüsslein-Volhard, 1987;
Nüsslein-Volhard et al., 1987; Lehmann and Nusslein-Volhard,
1991), and learning and memory (Dubnau et al., 2003). nos is
an animal-specific gene (Chen et al., 2006) maternally required
for the development and maintenance of the D. melanogaster
germ line, and zygotically for embryonic patterning and PGC
migration in the developing embryo (Wang and Lehmann,
1991; Wang et al., 1994; Kobayashi et al., 1996). Pum proteins
often function together with Nos proteins during development
(Sonoda and Wharton, 1999; Parisi and Lin, 2000; Jaruzelska
et al., 2003), including in the germ line and nervous system,
as detailed below.

nos and pum in the germ line
In D. melanogaster, nos and pum act together as inhibitors to
repress hunchback and bicoid translation in the posterior of the
embryo (Wharton and Struhl, 1991; Zamore et al., 1999). Pum
is thought to directly bind hunchback and bicoid mRNAs, and
to bring Nos to the repression complex (Murata and Wharton,
1995; Sonoda and Wharton, 1999). nos and pum are required
in the germ line for continued egg chamber production during
oogenesis, by regulating the germ line stem cell to cystoblast fate
transition via translational repression of oocyte differentiation
genes (Wang et al., 1994; Lin and Spradling, 1997; Forbes and
Lehmann, 1998; Szakmary et al., 2005; Joly et al., 2013). nos
is required in embryonic development for PGC survival and
migration (Kobayashi et al., 1996; Sano et al., 2001; Hayashi et al.,
2004; Sato et al., 2007), as well as for patterning the abdomen and
embryo posterior (Wang and Lehmann, 1991; Wang et al., 1994).

Requirements for, and genetic and physical interactions
between, Nos and Pum in the germ line are conserved in many
animals. In C. elegans, nos-1, nos-2 and a subset of pumilio-
related genes (fbf-1/fbf-2, puf-6/puf-7 and puf-8) are required for
various aspects of PGC development, including PGC migration,
cell death and proliferation (Subramaniam and Seydoux, 1999).
In X. laevis oocytes, Pum protein co-immunoprecipitates with a
X. laevis ortholog of nos (Nanos1; also called Xcat2) (Lai et al.,
2011), and binds cyclin B transcripts (Nakahata et al., 2001). In
addition to their conserved physical interaction, at least some
targets of Nos/Pum may also be conserved: in D. melanogaster,
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these proteins also bind to and repress translation of cyclin B1
(Kadyrova et al., 2007). In zebrafish, Pum2 is expressed in male
and female gonads, and is important for germ cell and nervous
tissue development (Wang et al., 2012). Furthermore, a zebrafish
homolog of nos is involved in PGC maintenance and migration
into the future gonad (Koprunner et al., 2001).

nos and pum in the nervous system
nos and pum also play roles in the development and function
of the nervous system of multiple taxa. For example, in
D. melanogaster, Nos colocalizes with RNA granules in dendrites,
and both nos and pum are needed for appropriate dendrite
morphogenesis, suggesting that they may repress mRNA
translation in the nervous system as they do in the germ line (Ye
et al., 2004). In larval class IV neurons, nos mRNA requires osk
for appropriate localization, as described below (Xu et al., 2013).
In addition, long-term memory in D. melanogaster requires pum
(Dubnau et al., 2003; Chen et al., 2008).

In mice, Pum2 is localized with RNP particles in the
somatodendritic region of hippocampal neurons (Vessey et al.,
2006), and Pum1 and Pum2 are required for hippocampal
neurogenesis and proper functioning (Zhang et al., 2017).
Furthermore, mouse Pum2 is implicated in forming stress
granules under metabolic stress in neurons, in dendritic
morphogenesis, and in regulating the synaptic function along
dendritic shafts (Vessey et al., 2006, 2010). Interestingly,
nos1 knockdown mice show no detectable neural defects in
terms of behavior or fertility (Haraguchi et al., 2003). In
the C. elegans genome, there are three nos-related genes and
at least ten PUF-domain proteins (Lynch et al., 2011), and
PUF-domain proteins have been shown to play memory-
related important roles in axonal and presynaptic regions (Lee
and Schedl, 2006; Arey et al., 2019). One of these Pum-
like proteins, FBF-1, is needed for the change in C. elegans
odor sensitivity that comes with prolonged exposure, known
as odor adaptation (Kaye et al., 2009). Pum also binds
to the 3′UTR of the cGMP-dependent kinase EGL-4 and
promotes its translation (Kaye et al., 2009). Of the three
nos-related genes, NOS-1 is required for odor adaptation
(Kaye et al., 2009).

nos and pum: additional relevant
expression data
Outside of bilaterians, there is also evidence for expression
and function of nos and pum orthologs in the germ line. In
the sexual polyp of the hydroid H. echinata, a pum ortholog
and the nanos ortholog nos2 are both expressed in oocytes
(Kanska and Frank, 2013), as are nos orthologs in the jellyfish
Podocoryne carnea (Torras et al., 2004) and Clytia hemisphaerica
(Leclère et al., 2012). In H. magnipapillata, nos orthologs
Cnnos1 and Cnnos2, are both expressed in the germ line
(Mochizuki et al., 2000). In the anthozoan Nematostella vectensis,
the nos ortholog Nvnos2 is expressed in putative germ cells
during embryogenesis and in developing oocytes (Extavour et al.,
2005; Torras and Gonzalez-Crespo, 2005). nos orthologs are
also expressed in developing gametes in the sponges Sycon

ciliatum (Leininger et al., 2014) and Oscarella lobularis (Fierro-
Constain et al., 2017). In zebrafish, Pum2 is expressed in the
brain (Wang et al., 2012). In H. echinata, reduction of Nos2
causes a reduction in nematogenesis (production of stinging
cells called nematocytes, considered a type of neural cell)
and an increase in neurogenesis (Kanska and Frank, 2013).
In sponges, while putative neural tissues remain difficult to
identify based on bilaterian-centric cell type criteria (Dunn et al.,
2015), expression of nos has been reported in globular cells and
cross cells, two candidate sensory cell types unique to sponges
(Mah and Leys, 2017).

oskar (osk), nanos (nos), piwi and vasa
The insect-specific gene oskar (osk) was first identified in the fruit
fly D. melanogaster as a maternal-effect gene that is necessary
and sufficient for specifying both the germ line and the posterior
abdomen of the embryo (Lehmann and Nüsslein-Volhard, 1986;
Ephrussi et al., 1991; Chen et al., 2006). Osk proteins have two
conserved, well-folded domains on either side of a region of
predicted high disorder (Jeske et al., 2015; Yang et al., 2015).
The N terminal domain is a LOTUS domain (also called an
OST-HTH domain) (Anantharaman et al., 2010) similar to
that of TUDOR5 and TUDOR7 proteins (Ewen-Campen et al.,
2012), and is predicted to dimerize (Jeske et al., 2015; Yang
et al., 2015) and bind Vasa protein (Markussen et al., 1995;
Breitwieser et al., 1996; Vanzo and Ephrussi, 2002; Jeske et al.,
2017). The C terminal domain is known as the OSK domain
and is implicated in binding nanos (see below), oskar, germ cell
less and polar granule component mRNAs (Jeske et al., 2015;
Yang et al., 2015).

osk, nos, piwi and vasa in the germ line
In D. melanogaster, osk is expressed from the maternal genome
during oogenesis, and osk mRNA is deposited into the developing
oocyte in a process dependent on Splicing oskar Location
Elements (SOLE) in its 3′UTR (Ghosh et al., 2012). SOLE
recruitment of Exon Junction Complex components, including
barentsz, mago nashi, and tsunagi, is required for proper osk
ribonucleoprotein (RNP) granule motility into the oocyte, and
for posterior localization of osk within the oocyte (Ghosh et al.,
2012). Posterior localization of osk also requires interactions
with Staufen (St Johnston et al., 1991; see below) and Kinesin
proteins (Brendza et al., 2002). Posteriorly localized osk mRNA
is translated into two protein isoforms, Short Osk and Long Osk
(Markussen et al., 1995). Short and Long Osk differ by an N
terminal 138 amino acid (aa) addition (Markussen et al., 1995).
The current model of the distinct functions of these isoforms
is as follows: Long Osk localizes to endocytic membranes at
the oocyte posterior (Vanzo et al., 2007; Tanaka and Nakamura,
2008), anchors both osk mRNA and Short Osk (Vanzo and
Ephrussi, 2002; Tanaka et al., 2011), and stabilizes mitochondrial
accumulation (Hurd et al., 2016). Short Osk localizes to electron-
dense organelles called polar granules and recruits products of
genes required for germ cell and posterior identity specification
including vasa, nanos, and piwi (see below) (Markussen et al.,
1995; Breitwieser et al., 1996; Vanzo et al., 2007). Although osk
likely evolved in a last common insect ancestor (Lynch et al.,
2011; Ewen-Campen et al., 2012; Blondel et al., 2020), the Long
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Osk domain and isoform appear to have evolved only within the
Diptera (Blondel et al., 2020).

osk, nos, piwi and vasa in the nervous
system
Evidence for a role for osk in the nervous system comes from
studies of two insects, D. melanogaster and the cricket Gryllus
bimaculatus. In the cricket, Gb-osk mRNA and protein are
enriched in neuroblasts in the embryonic nervous system (Ewen-
Campen et al., 2012) and in the adult brain (Ewen-Campen
and Extavour, unpublished). First identified in a grasshopper
(Wheeler, 1891), neuroblasts are neural stem cells found in all
pancrustaceans (insects and crustaceans) (Lear, 2001; Richter
et al., 2010). Neuroblasts arise from the ventral ectoderm during
embryogenesis and divide asymmetrically to produce all of the
neurons of the nervous system. Gb-osk RNAi in cricket embryos
results in broken or reduced lateral axon tracts, a phenotype that
is consistent with neuronal division defects (Ewen-Campen et al.,
2012). Neuroblasts of G. bimaculatus also express Vasa and Piwi
proteins (Ewen-Campen et al., 2012), raising the possibility that
Osk may interact with these proteins in neuroblasts, as it does
in the germ line in other contexts (see section on Vasa below).
In D. melanogaster, osk co-localizes with nanos (nos) mRNA in
larval class IV neurons, and is required for correct localization of
nos mRNA within these neurons (Xu et al., 2013).

osk, nos, piwi, and vasa: additional
relevant expression data
Gene expression data suggest that osk also specifies germ cells in
the ant Messor pergandei, and osk knockdown experiments in the
wasp Nasonia vitripennis show that the germ cell and posterior
identity specification roles of osk are conserved in this insect
as well (Lynch et al., 2011). However, osk is not required for
germ line establishment, maintenance or function in the cricket
G. bimaculatus (Orthoptera) (Ewen-Campen et al., 2012).

piwi, argonaute (Ago), aubergine (aub)
and small RNAs
PIWI proteins are evolutionarily conserved RNA binding
proteins (e.g., Bohmert et al., 1998; Moussian et al., 1998;
reviewed in Thomson and Lin, 2009; Ku and Lin, 2014)
found across metazoan and plant genomes (Chen et al., 2006).
The founder ortholog of this group was first identified in a
D. melanogaster screen for genes that abolish asymmetrical
divisions in germ line stem cells (GSCs) (Lin and Spradling,
1997), and named after the male sterility phenotype caused by
loss of function mutations (PIWI: P-element induced wimpy
testis). The PIWI clade of proteins belongs to the Argonaut/PIWI
protein family (AGO/PIWI, also known as the PAZ-PIWI
domain or PPD family of proteins) (Thomson and Lin, 2009;
Ku and Lin, 2014).

piwi, AGO, aub and small RNAs in the
germ line
PIWI proteins are expressed in germ cells or their progenitors
in many animals, and their functions in the germ line

have been extensively studied in a wide range of animals
(Juliano et al., 2011). PIWI germ line functions include germ
line determination, germ line stem cell (GSC maintenance),
spermiogenesis, and silencing transposon expression in the germ
line genome both at the epigenetic and post-transcriptional levels
(Thomson and Lin, 2009; Ku and Lin, 2014). The latter role is
performed via interaction with small RNAs, including but not
limited to PIWI-associated small RNAs (piRNAs) (Iwasaki et al.,
2015; Furrer et al., 2017; Rojas-Rios and Simonelig, 2018). Like
vasa, piwi is also expressed in multiple somatic stem cell types
outside of bilaterians.

piwi, AGO, aub and small RNAs in the
nervous system
PIWI-related proteins play critical functions in the soma as
well as the germ line (Ross et al., 2014). This includes
roles in the central nervous system of all major groups of
animals, including deuterostomes, protostomes, and bilaterian
outgroups (Juliano et al., 2011), as illustrated by the following
examples: In the sea slug A. californica, Piwi protein interacts
with a DNA methyltransferase to control the expression
of CREB2, a long-term memory repressor, during long-
term memory formation (Rajasethupathy et al., 2012). The
zebrafish piwi ortholog ziwi is expressed in the eye, the
forebrain, and the midbrain during organogenesis (Tan et al.,
2002). In the nematode C. elegans, the PIWI protein PRG-
1 represses axonal regeneration in adult mechanosensory
neurons (Kim et al., 2018). Mouse piwi orthologs (miwi genes)
are expressed in the adult brain (Leighton et al., 2019),
and miwi colocalizes with piRNAs to form RNP puncta in
the dendrites of cultured hippocampal neurons (Lee et al.,
2011). LNA-based antisense inhibition of one of these piRNAs
results in a significant decrease in dendrite spine area (Lee
et al., 2011). Further, knockdown of piwi-like genes in the
mouse hippocampus affects adult behavior, as assayed in an
experimental fear-conditioning paradigm (Leighton et al., 2019).
In D. melanogaster, PIWI-related proteins Argonaute (Ago3) and
Aubergine (Aub) are expressed at different levels in distinct
subsets of neurons in the mushroom body (Perrat et al.,
2013), the substrate for learning and memory within the insect
brain (Heisenberg, 2003). Lower expression levels of Ago3
and Aub correlate with increased expression of transposable
elements in the adult fly brain (Perrat et al., 2013), consistent
with the proposed role of Piwi-related proteins in suppressing
transposable element mobility (Thomson and Lin, 2009; Ku
and Lin, 2014). This heterogeneity of Aub and Ago expression
levels is speculated to contribute to behavioral variability
(Perrat et al., 2013).

piwi, AGO, aub and small RNAs:
additional relevant expression data
Expression of piwi orthologs during gametogenesis has been
documented in multiple cnidarians (Seipel et al., 2004; Leclère
et al., 2012; Plickert et al., 2012). The homoscleromorph sponge
O. lobularis expresses a piwi ortholog in germ cells during
spermatogenesis and oogenesis (Fierro-Constain et al., 2017).
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In another sponge, the demosponge Ephydatia fluviatilis, a
piwi homolog is expressed in choanocytes and archeocytes
(Funayama, 2010; Funayama et al., 2010; Alié et al., 2015),
which is relevant to the sponge germ line because gametogenic
cells are thought to be derived from one or both of
these cell types in these animals (Funayama, 2010). In the
ctenophore Pleurobrachia pileus, piwi is expressed in the adult
male and female germ line (Alié et al., 2010). Neural cell
type expression of piwi orthologs is also present in non-
bilaterians. In the cnidarian Clytia hemisphaerica, piwi is
expressed in nematogenic and neural stem cells (Denker et al.,
2008), and in the ctenophore P. pileus, piwi is expressed
in the apical organ, which is an aboral sensory organ
(Alié et al., 2010).

vasa and piwi
vasa encodes a highly conserved DEAD box-containing ATP-
dependent RNA helicase (Hay et al., 1988; Lasko and Ashburner,
1988) that is expressed in the germ line of every animal
studied to date (Ewen-Campen et al., 2010; Gustafson and
Wessel, 2010; Yajima and Wessel, 2011b). DEAD box helicases
predate animals (Chen et al., 2006) and are implicated in
a broad range of biological functions including transcription,
translation, splicing, ribosome biogenesis, nuclear export, and
mRNA degradation (Linder, 2006; Lasko, 2013). vasa expression
is also a hallmark of many types of stem cells, where
it is proposed to interact with the products of the piwi,
bruno, and PL10 genes in a conserved gene network to help
maintain pluripotency (Alié et al., 2010; Juliano et al., 2010;
Fierro-Constain et al., 2017).

vasa and piwi in the germ line
First discovered for its role in abdomen formation during
embryonic development in D. melanogaster (Schüpbach and
Wieschaus, 1986), vasa encodes a protein found in the cytoplasm
of animal germ cells and required for one or both of germ cell
specification and germ line development in multiple animals
(reviewed in Yajima and Wessel, 2011b). Vasa protein is a
component of germ line RNP granules, and has predicted
roles in regulating mRNA translation, including that of nanos
(Gavis et al., 1996; see below) and gurken (Tomancak et al.,
1998), potentially by interacting with initiation factor dIF2
(Carrera et al., 2000). During the cell cycle, vasa may be
regulated by the meiotic checkpoint pathway (Ghabrial and
Schupbach, 1999), can associate with the spindle (Carré
et al., 2002; Oyama and Shimizu, 2007), and is implicated
in regulation of mitotic chromosome condensation (Pek and
Kai, 2011; Yajima and Wessel, 2011a,b; Schwager et al., 2015).
Vasa protein interacts physically with Piwi protein in the
germ line of mice (Kirino et al., 2010) and D. melanogaster
(Megosh et al., 2006), and in cultured ovarian cells of the
silkworm Bombyx mori (Xiol et al., 2014). Vasa, like Piwi,
is involved in the small RNA biogenesis pathway in many
animals (Vagin et al., 2004; Shirayama et al., 2014; Xiol et al.,
2014; Dehghani and Lasko, 2016; Spracklin et al., 2017). Vasa
and Osk proteins also physically interact in the germ line,
where the LOTUS domain of Osk binds Vasa and facilitates

its helicase activity (Jeske et al., 2015; Yang et al., 2015;
Jeske et al., 2017).

vasa and piwi in the nervous system
To our knowledge, the only reported examples of a role for vasa
in the nervous system come from (1) the cricket G. bimaculatus,
where it is found co-expressed along with piwi and osk in
neuroblasts (Ewen-Campen et al., 2012), and (2) cells of the apical
sensory organ in the ctenophore Pleurobrachia pileus (Alié et al.,
2010). Its function in these invertebrate nervous systems remains
to be elucidated.

vasa and piwi: additional relevant
expression data
We note that in multiple animals, vasa expression is also
a hallmark of pluripotent and somatic stem cell lineages,
which can give rise to both germ line and neural cells.
These include the archaeocytes of the sponge E. fluviatilis
(Alié et al., 2015), the interstitial cells of the cnidarians
H. magnipapillata and H. echinata (Mochizuki et al., 2001;
Rebscher et al., 2008), the presumptive founder cells of
the larval posterior growth zone of the annelid Platynereis
dumerilii (Rebscher et al., 2007), the stem cells of the colonial
tunicate Botryllus schlosseri (Sunanaga et al., 2006; Rosner
et al., 2009; Kawamura and Sunanaga, 2011), and the neoblasts
of the platyhelminths Macrostomum lignano (Pfister et al.,
2008), Dugesia japonica (Shibata et al., 1999), Schmidtea
mediterranea (Wagner et al., 2012), and Schistosoma mansoni
(Wang et al., 2013).

boule (bol) and twine (twe)
boule (bol) is a member of the Deleted in Azoospermia (DAZ)
RNA-binding protein family, which contains the autosomal
dazl and bol genes, and the human Y-linked DAZ gene
(Shah et al., 2010). Although not reported in plant or
fungal genomes to date, bol may predate animals based
on identification of a putative ortholog in the slime mold
Dictyostelium discoideum (Chen et al., 2006). In the bony
fish lineage, a bol duplication likely gave rise to the Daz-like
gene (Dazl), which then underwent a transposition to the Y
chromosome in primates to give rise to DAZ (Shah et al.,
2010). DAZ family members display predominant male germ
line expression patterns, and DAZ family genes are crucial for
germ cell development and meiotic progression across animals
(summarized in Kim and Rhee, 2016).

bol and twe in the germ line
bol was first identified in a mutagenesis screen for D. melanogaster
male-sterile mutants (Castrillon et al., 1993). twe was identified
by multiple independent studies (Jimenez et al., 1990; Alphey
et al., 1992; Courtot et al., 1992) that searched for orthologous
or functionally analogous genes to the cdc25 phosphatase that
regulates mitotic entry in Schizosaccharomyces pombe (Russell
and Nurse, 1986). bol mutants fail to undergo male meiosis,
but homozygous female bol mutants are fertile (Eberhart
C. G. et al., 1996). Bol controls the translation of twe,
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allowing meiotic entry in males (Courtot et al., 1992; Maines
and Wasserman, 1999). The D. melanogaster meiotic entry
defect can be rescued by the X. laevis bol ortholog Xdazl
(Houston et al., 1998), and human and mouse DAZ can
also partially rescue D. melanogaster bol loss of function
(Houston et al., 1998; Xu et al., 2003). Orthologs of bol
and twe also play a role in sperm maturation in haploid
males in the sawfly Athalia rosae (Hymenoptera), which
normally abort meiosis I but maintain meiosis II to produce
haploid sperm (Sekine et al., 2015). As in D. melanogaster,
bol knockdowns in A. rosae show no apparent defects in
females (Sekine et al., 2015). Bol is also expressed in the
testis in male mammals. In mice and humans, Bol protein
is present in the cytoplasm of developing spermatocytes and
can be detected through meiosis (Xu et al., 2001). Loss of
dazl function in mice leads to defects in gametogenesis in
both sexes (Ruggiu et al., 1997). As in D. melanogaster, bol
homozygous mutant male mice are infertile, but females are
viable and fertile (Shah et al., 2010). Bol also co-localizes
to RNPs that form under stress (called stress granules) in
mouse male germ cells (Kim and Rhee, 2016). In X. laevis,
knockdown of the maternally expressed ortholog Xdazl reduces
the number of PGCs and perturbs PGC migration during
embryogenesis (Houston and King, 2000). In contrast to the
fly, mouse, human and frog bol genes, the C. elegans bol
ortholog daz-1 plays a role in oocyte determination rather
than in spermatogenesis (Karashima et al., 2000). In wild type
hermaphroditic worms, germ cells undergo two developmental
decisions, the first from mitotic proliferation to meiosis in the
L4 larval stage, and the second from sperm to oocyte production
in young adults (Karashima et al., 2000). RNAi against daz-
1 in C. briggsae leads to continuous sperm production,
indicating a disruption in the spermatogenesis/oogenesis switch
(Karashima et al., 2000).

bol and twe in the nervous system
While bol expression is not detected in the human brain (Uhlen
et al., 2015), bol and twe also function in the nervous system in
adult D. melanogaster (Joiner and Wu, 2004), where an isoform
of bol that is not found in the testis is expressed in the cytoplasm
and extending neurites of most cells throughout the adult brain
(Joiner and Wu, 2004). Bol negatively regulates developmental
axon pruning in D. melanogaster (Hoopfer et al., 2008). Over-
expression of bol throughout the nervous system leads to defects
in neuronal communication between the retina and the lamina,
abnormal locomotory behavior in wandering larvae, and lethality
before the third larval stage (Joiner and Wu, 2004). The neuronal
bol isoform interacts genetically with twe in the nervous system,
just as bol does in the germ line (Joiner and Wu, 2004).

CPEB, Maskin, and eIF4E
Cytoplasmic polyadenylation element binding protein (CPEB)
is a member of an animal protein family implicated in binding
the 3’UTRs of mRNAs at cytoplasmic polyadenylation element
(CPE) sites, and in controlling their translation and cytoplasmic
localization via regulation of their poly(A) tail lengths (Hake and
Richter, 1994; Wells et al., 2000). Some animals have multiple

paralogs of CPEB genes in their genomes: D. melanogaster
has two CPEB genes, whereas X. laevis, mice, humans and
C. elegans have four (Chen et al., 2006). The C-terminal half
of the CPEB protein contains RNA binding domains (RBDs),
including two RNA-recognition motifs (RRM domains) and a
zinc finger domain (ZZ domain), which are used to establish
CPEB gene relationships (Hake et al., 1998; Mendez and
Richter, 2001; Fernandez-Miranda and Mendez, 2012). Pairwise
sequence alignments of the RBDs of different CPEB genes
show that CPEB genes form two subgroups (Hake et al., 1998;
Mendez and Richter, 2001; Fernandez-Miranda and Mendez,
2012). One subgroup, which includes the D. melanogaster
oo18 RNA binding protein (orb) (Christerson and McKearin,
1994; Lantz et al., 1994), mouse CPEB1 (Tay and Richter,
2001) and X. laevis CPEB1 (Hake and Richter, 1994), are
expressed and required in the germ line for initiation of
translation of CPE-containing mRNAs. CPEB genes in the second
group are more broadly expressed in several somatic tissues,
including the nervous system, in addition to the germ line.
Their examples include D. melanogaster orb2 (Hafer et al.,
2011), mouse CPEB2-4 (Kurihara et al., 2003; Theis et al.,
2003), and human CPEB3 and CPEB4 (Kikuno et al., 2004).
Given that CPEB genes control mRNA expression across tissues,
developmental stages and species, some have speculated that
they do so via a mechanism of local translational control that is
evolutionarily conserved, involving the cytoskeleton, eukaryotic
initiation factor (eIF4E) and the eIF4E binding protein Maskin
(Stepien et al., 2016).

CPEB, Maskin and eIF4E in the germ line
D. melanogaster orb was the first identified member of the CPEB
family of translational regulators and is required to establish
polarity in developing eggs and early embryos (Lantz et al., 1992,
1994; Christerson and McKearin, 1994). orb controls translation
and polyadenylation of mRNAs including oskar and gurken
(Chang et al., 1999, 2001; Tan et al., 2001; Castagnetti and
Ephrussi, 2003; Norvell et al., 2015; Davidson et al., 2016), and
organizes and repolarizes the microtubule cytoskeleton during
D. melanogaster oogenesis by interacting with Actin, Dynein and
Kinesin (Barr et al., 2019a,b). In C. elegans, CPEB homologs
(called CPB-1,2,3 and FOG-1) are required for the switch
from sperm to egg production during germ cell development,
and control germ cell fate by regulating the translation of
specific mRNAs (Luitjens et al., 2000; Jin et al., 2001). CPEB
interactions are also well studied in X. laevis oocytes, where
CPEB homologs are required for normal oocyte maturation,
and also regulate the cell cycle in early embryos (Stebbins-
Boaz et al., 1996; Groisman et al., 2000; Groisman et al.,
2002; Igea and Mendez, 2010). Co-immunoprecipitation, protein
pull downs and yeast two-hybrid assays have shown that in
X. laevis, CPEB1 directly binds both the eukaryotic translation
initiation factor eIF4E, and the 4E-binding protein Maskin
(Stebbins-Boaz et al., 1999; Cao and Richter, 2002; Meijer
et al., 2007). It has been suggested that such a CPEB-Maskin-
eIF4E interaction may serve as a typical example for 3′UTR-
mediated translational repression across metazoans (Stebbins-
Boaz et al., 1999). Indeed, D. melanogaster Orb from ovary
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extracts has also been shown to immuno precipitate with eIF4E
(Wong et al., 2011).

CPEB, Maskin and eIF4E in the nervous
system
D. melanogaster orb2 is expressed in several somatic tissues,
including the nervous system at all stages of development (Hafer
et al., 2011). orb2 mRNA and protein expression are detectable
in the central and peripheral embryonic nervous systems (Hafer
et al., 2011). In the central nervous system of embryos and
larvae, Orb2 protein expression is largely limited to cell bodies,
and functions in asymmetrical cell division (Hafer et al., 2011).
In adult neurons, orb2 is localized at the synaptic terminals,
and is required for learning and memory (Keleman et al., 2007;
Kruttner et al., 2012; Majumdar et al., 2012). In the sea slug
A. californica, CPEB forms prion-like multimers in neurons.
D. melanogaster Orb2 injected into A. californica neurons also
forms such aggregates (Si et al., 2003, 2010), suggesting that these
aggregates may be relevant to learning and memory in these
animals, as they may contribute to synapse-specific differences
(Fiumara et al., 2015). In sensory neurons, ApCPEB co-localizes
in RNA granules that also contain eIF4E, FMRP, and Stau
(Barbee et al., 2006; Chae et al., 2010). A second A. californica
CPEB homolog, ApCPEB4, has a role in long-term facilitation,
although it lacks a prion-like domain (Lee et al., 2016). In both
mammalian and A. californica neurons, CPEB is required for
mRNA shuttling, and it co-localizes with and polyadenylates
multiple mRNAs (Huang et al., 2002, 2003; Chae et al., 2010).
In X. laevis and mouse neurons, CPEB colocalizes with Maskin
in a complex containing Kinesin and Dynein, suggesting that
it may regulate mRNA transport and translation in dendrites
(Huang et al., 2003) similar to its role in the germ line. In mice,
CPEB3 interacts with the Actin cytoskeleton and has been shown
to act as a functional prion as well (Stephan et al., 2015), with
CPEB expression at synapses in rodent brains being required
for synaptic plasticity (Wu et al., 1998), the cellular basis for
memory and learning.

DISCUSSION

Here we have highlighted many genes that, following their initial
characterization in the germ line, were discovered to also have
neural roles. For many such genes with a neural role in one
species, there is evidence for a neural role in other species as well,
often with the same set of core molecular interaction partners
(Table 2). We consider that the data currently available are too
limited for us to propose whether the germ line roles or the
neural roles of these genes represent their putative ancestral
functions in a last common ancestor of animals [but see Ewen-
Campen et al. (2012) for a proposal that oskar’s role in the insect
germ line is derived, resulting from co-option from a putative
neural role]. It is clear that relying on single gene expression
patterns alone to identify homologies can be misleading (Wagner
et al., 2012; Wang et al., 2013), and we are not proposing to
use such data as the sole criteria for this purpose (Tautz, 1998;
Nielsen and Martinez, 2003). Instead, our aim here is to suggest

possible explanations for the molecular and cellular basis for
this pleiotropy by looking at the properties of the molecular
mechanisms of these shared genes, which may be linked to the
evolution of cell-type specific functions.

Regulatory Commonalities of Germ Line
and Nervous System
We begin by highlighting some independent yet interesting
similarities between the germ line and the nervous system.
First, germ cells, pluripotent stem cells, and undifferentiated
or abnormally organized embryonic cells have been reported
to differentiate towards neural cell fate under a number
of circumstances. For example, in C. elegans, germ cells
that lose P-granules can ectopically express somatic markers,
including neuronal markers (Knutson et al., 2017). In induced
human PGC-like cells generated from pluripotent stem cells,
BLIMP1 is actively required to promote PGC fate and
to repress neuronal differentiation (Sasaki et al., 2015).
Dissociated X. laevis embryonic animal cap cells are able to
upregulate the neural marker N-CAM despite the absence
of normal spatial organization (Sato and Sargent, 1989)
Embryonic stem (ES) cells spontaneously and readily exhibit
aspects of neural identity under specific culture conditions
(Tropepe et al., 2001). When plated at low densities in
phosphate buffered saline, mouse ESCs can express nestin and
Sox1, which is suggestive of neural stem cell differentiation
(Smukler et al., 2006). It has therefore been suggested
that neuronal fate is a preferred differentiation program
for cells that lose their germ line identity or pluripotency
(Knutson et al., 2017).

Second, the gene expression profiles of human and mouse
testes and brain are highly similar to each other (Guo et al.,
2003, 2005). Whether or how the two tissues communicate to
regulate this similar gene expression is unclear, although Guo and
colleagues (Guo et al., 2005) speculate that the hypothalamus-
pituitary-gonadal axis (Plant, 2015; Kaprara and Huhtaniemi,
2018) may play a role. Finally, such observations may also help
explain the link between disruption of genes with known roles
in the germ line, and neural disease phenotypes. For example,
the D. melanogaster tumor suppressor gene brain tumor (brat),
together with nos and pum, represses translation in female germ
line stem cells (Sonoda and Wharton, 2001), and brat loss
of function mutations also cause tumors in the brain (Arama
et al., 2000). Additionally, ectopic expression of at least 26 genes
normally expressed in the germ line, may be linked to malignant
brain tumor growth in D. melanogaster (Janic et al., 2010). Thus,
it is possible that some shared or similar biological processes link
these genes to both germ line and neural tissue types outside of
mammals as well.

A Shared Molecular Basis for Pleiotropy
In this review we have summarized some of the evidence for the
expression and functional requirements for a number of genes
in the above mentioned two cell types. However, in most cases
the molecular mechanisms linking the function of these genes to
the cellular execution of neural or germ line fate remain unclear.
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It is therefore difficult to determine whether this pleiotropy is
a result of the same molecular function in apparently unrelated
biological processes, or because some or all of these genes have
multiple molecular functions per gene. In principle, it could be
the case that these genes have the same immediate downstream
partners in both tissue contexts, but their subsequent interactors
or secondary targets are different, leading to differences in cellular
responses to the activities of these genes within each tissue.
Nevertheless, in the following section, we propose some possible
explanations, based on shared molecular functions of these genes,
for the potentially close or labile relationship between germ line
and neural cell fates.

Cytoplasmic Aggregates: The Roles of
RNP Granules in Germ Line and Nervous
System
One way to understand the repeated conservation of expression,
molecular function and interactions of these genes in neural
tissues and germ lines, is by considering whether the products
of these genes have functional or biochemical properties that
could make them particularly suited for use by these cell types.
We note that products of most of the genes discussed here
share three notable properties. First, they are RNA binding
proteins (e.g., Osk, Piwi, Vasa, Stau, Nos, FMRP), and play
multiple roles in RNA biology including localization (e.g.,
Stau, Osk), translational activation (e.g., Vas, and Stau), and
translational repression (e.g., Nos, Pum, Stau). Second, many
of them break cellular symmetry by becoming asymmetrically
localized within the cytoplasm or facilitating the asymmetrical
localization of other molecules (e.g., Osk, Stau/Btz, Nos).
Third, the majority catalyze the formation of and/or localize
to RNP granule complexes, which are in turn sometimes
asymmetrically distributed within the cell (e.g., germ granules
in D. melanogaster). RNP granules are electron dense, non-
membrane bound cytoplasmic aggregates of RNAs and proteins
(Eddy, 1975; Ikenishi, 1998). The assembly of proteins within
RNPs is often transient or reversible, and RNPs are important
for the localization, stability and translational control of their
RNA (and protein) cargo (Arkov and Ramos, 2010; Voronina
et al., 2011; Schisa, 2012; Gao and Arkov, 2013). Moreover,
in addition to giving RNP granules their functionality in
translational control, RNA Binding Proteins (RBPs) have been
noted to commonly have regions of low sequence complexity
and prion-like domains, both of which can mediate RNP
granule assembly and disassembly (Brangwynne et al., 2009;
Han et al., 2012; Kato et al., 2012; Molliex et al., 2015;
Sudhakaran and Ramaswami, 2017).

RNP granules are found in both germ line and somatic
cells. Depending on the tissue they are found in, RNP granules
are referred to in the literature by various names, including
polar or germinal granules in germ cells, stress granules and
processing bodies in somatic cells, and neuronal granules in
neurons (reviewed in Voronina et al., 2011). All described
classes of RNP granules share multiple components with each
other (reviewed in Kulkarni and Extavour, 2017). Functional
amyloid-like assemblies like RNP granules can govern cellular

processes both in the germ line, including PGC specification
and spermatogenesis (reviewed in Voronina et al., 2011), and
in the soma, including in the consolidation of memory in
the nervous system (Si et al., 2003, 2010; Si and Kandel,
2016). In the latter context, proteins with prion-like domains,
which may facilitate amyloid-like assemblies, localize at neuronal
synapses and form active, stable complexes with self-perpetuating
properties central to memory storage (Si et al., 2003, 2010;
Sudhakaran and Ramaswami, 2017). We note that Oskar and
FMRP have predicted prion-like domains (McBride et al., 2012;
Boke et al., 2016). Germ line and neural cells also share the
commonality of regulating translation at specific sites within the
cell, e.g., the oocyte posterior in the case of germ plasm formation
(Lehmann, 2016), or at select neuronal synapses in the case of
neurons, leading to synaptic plasticity (Kang and Schuman, 1996;
Si et al., 2003).

Small RNA Biogenesis as a Regulator of
Gene Expression in Germ Cells and
Neurons
Piwi, its related protein Aubergine, and Vasa are among the many
RNA binding proteins that are associated with and indispensable
for small RNA biogenesis in the germ line (Ku and Lin,
2014). piRNAs are endogenous small non-coding RNAs that are
proposed to maintain the genomic integrity of germ cells by
limiting transposon mobility (Aravin et al., 2001, 2006; Girard
et al., 2006; Grimson et al., 2008). piRNAs associate with the
Argonaute family member Piwi (e.g., Mochizuki et al., 2002),
and other members of this family (e.g., Ago3) interact with
other small RNAs, including miRNAs and siRNAs (Girard et al.,
2006; Vagin et al., 2006; Brennecke et al., 2007; Houwing et al.,
2007; Kim et al., 2009). Small RNA-mediated gene silencing
occurs at both transcriptional and post-transcriptional levels,
and is an important mechanism controlling gene expression
(Holoch and Moazed, 2015). piRNAs were first characterized
in the germ line, but recent reports support their existence
in somatic tissues as well, including neural tissues (Lee et al.,
2011; Rajasethupathy et al., 2012; Ross et al., 2014). Indeed, in
A. californica, after the germ line, the nervous system is amongst
the tissue types that show relatively high selective enrichment
for piRNAs (Rajasethupathy et al., 2012). There is evidence
for primary piRNA biogenesis in the germ line and neurons
(Rajasethupathy et al., 2012; Mani and Juliano, 2013; Kim et al.,
2018) consistent, with a functional role for piRNAs in both cell
types. For example, Piwi and piRNAs regulate Myosin-Va in
the central nervous system of mammals (Naisbitt et al., 2000;
Lee et al., 2011), control local translation in mouse neuronal
dendrites (Lee et al., 2011), mouse dendritic spine development
(Lee et al., 2011), neuronal migration (Viljetic et al., 2017),
and may be linked to growth of malignant brain tumors (Janic
et al., 2010). Finally, piRNAs regulate transposon activity both
in the brain and in the germ line (reviewed in Mani and
Juliano, 2013). Retrotransposons are highly active in neural
tissues and contribute to proper neuronal differentiation and
generation of somatic mosaicism in the brain (Muotri et al.,
2005; Coufal et al., 2009). Thus, piRNAs are crucial both for
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the germ line, and for normal development and function of
the nervous system, which may help explain why we observe
that genes important for their biogenesis are expressed in
both tissue types.

Challenges in Determining the
Evolutionary Sequence of Co-option
Events
Co-option of partial or complete gene networks in different
biological contexts is common (Jacob, 1977). Novel traits may
evolve either by the co-option of pre-existing gene networks
that operate in functional modules, or by building a new gene
network for each new developmental context (Sanetra et al.,
2005; Monteiro and Podlaha, 2009). Based on the observations
summarized herein, we propose that the germ line and nervous
tissues of animals contain examples of gene network co-option,
given that the genes involved are pleiotropic, and that we do
not think it likely that the germ line and nervous system are
homologous organ systems. In principle, one way of co-opting a
gene network could be by recruiting an upstream regulator of an
existing network into a new developmental context. This is what
we previously proposed may have happened in the case of oskar in
germ plasm (Ewen-Campen et al., 2012). In both cricket (Ewen-
Campen et al., 2012) and fly (Xu et al., 2013) nervous systems,
oskar is co-expressed with vasa, piwi and/or nanos, genes whose
products function together in multiple other cellular contexts
as discussed above. Given that germ plasm in insects is likely a
derived mechanism of PGC specification (Extavour and Akam,
2003; Lynch et al., 2011; Ewen-Campen et al., 2013), we propose
that the functional links among these genes are likely to predate
the evolution of insect germ plasm, suggesting that they were co-
opted to the germ line context from a preexisting somatic role
(Ewen-Campen et al., 2012).

When moving beyond insects to consider all animals, because
there have been fewer reported instances to date of the expression
or function of these genes in the nervous system outside of
bilaterians, one might wish to hypothesize that the germ line
functions of these gene evolved first, and then were co-opted
to the nervous system in Bilateria. However, the functions of
these genes have been explored primarily in a small number
of study systems, heavily biased toward the Bilateria. Moreover,
the diversity of cell types, including neural cell types, outside
of Bilateria are not as well studied at the molecular level as are
those of bilaterians. The evidence that the earliest metazoans were
highly complex animals is mounting (Halanych, 2015; Whelan
et al., 2017; Paps, 2018; Laumer et al., 2019), and may well
displace the traditional view that early animals were “simple” with
few differentiated cell types, lacking complex reproductive or
sensory systems. We therefore consider it premature to speculate
on whether the ancestral function of these genes in animals,
was in the germ line or in the nervous system. Rather than
thinking about the patterns in their putative ancestral functions
in establishing a particular cell type, we could consider the
hypothesis that the cellular function of translational control
in RNP granules is the relevant conserved ancestral role of
this machinery in eukaryotes. This could explain why striking
phenotypes are particularly or easily observed in neurons and

germ cells, because these cell types rely heavily on translational
regulation for their biological functions. The advent of animal-
specific genes like nos and osk may have permitted the emergence
of tissue-specific versions of this machinery, deployed specifically
in germ lines and nervous systems to refine or augment their
regulation of translation.

CONCLUSION

We note that an association between many of the genes discussed
herein and “stemness” or cellular multipotency, has already
been pointed out by several researchers: the general proposal
is that these genes may have been components of an ancestral
animal toolkit in stem cells, regardless of the fate of their
differentiated progeny (e.g., Alié et al., 2010, 2015; Juliano et al.,
2010; Fierro-Constain et al., 2017). Here we speculate that if, as
in many extant animals, ancient metazoans generated gametes
from germ line stem cells, and/or neurons from neuroblasts,
the observed association of these genes with pluripotency may
also help explain the gene expression overlap in germ line and
nervous tissues. Going forward, technical advances including
single-cell RNA sequencing, chromatin architecture analysis
and proteomics, and improved microscopy and computational
methodologies including machine learning, might make it
possible to test such hypotheses experimentally (e.g., Siebert
et al., 2019). The case we have discussed here, of the germ
line and the nervous system, is an example of the broader,
fundamental question of how the same molecular mechanisms
can underlie different cell identities. Once putative ancient cell
type inventories are reconstructed for important evolutionary
nodes, we can perhaps begin to unravel how ancient cell types, in
some cases expressing highly similar machinery, diversified into
extant cell types that make up the tissues and organ systems of
living animals (Kin, 2015; Arendt et al., 2016), helping answer
some of the questions that we have raised here.
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