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Most tools available for manipulating gene function in insects

have been developed for holometabolous species. In contrast,

functional genetics tools for the Hemimetabola are highly

underdeveloped. This is a barrier both to understanding

ancestral insect biology, and to optimizing contemporary study

and manipulation of particular large hemimetabolous orders of

crucial economic and agricultural importance like the

Orthoptera. For orthopteran insects, including crickets, the

rapid spread of next-generation sequencing technology has

made transcriptome data available for a wide variety of species

over the past decade. Furthermore, whole genome sequences

of orthopteran insects with relatively large genome sizes are

now available. With these new genome assemblies and the

development of genome editing technologies such as the

CRISPR-Cas9 system, it has become possible to create gene

knock-out and knock-in strains in orthopteran insects. As a

result, orthopteran insects should become increasingly feasible

for laboratory study not only in research fields that have

traditionally used insects, but also in agricultural fields that use

them as food and feed. In this review, we summarize these

recent advances and their relevance to such applications.
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Introduction
Orthoptera is the order of insects that includes grass-

hoppers, locusts, crickets and katydids. The order is

subdivided into two suborders, Caelifera (grasshoppers,

locusts, and their relatives) and Ensifera (crickets, katy-

dids and their relatives). Crickets sensu lato belong to the

Gryllidae. More than 3000 species of crickets are known

to belong to this family. Like grasshoppers, they have

large hind legs for jumping and their forewings are hard

and leathery. Among orthopteran insects, crickets are

famous as chirping insects. Traditional cultures have long

been fascinated by the sound of crickets and there are

many folk tales and myths about crickets worldwide. This

review introduces the most recent genomic resources and

genome editing technologies for crickets, which might

make crickets new model organisms for functional geno-

mics research, and allow boosting of cricket production for

commercial purposes (Tables 1 and 2).

Gryllus bimaculatus was first described in 1773 by Charles

De Geer (Geer 1773), who named it Gryllus (‘cricket’ in

Latin) bimaculatus (‘two-spotted’ in Latin) (Figure 1a).

This species is thus commonly referred to as the ‘two-

spotted field cricket’, which is derived from the fact that it

has two pale yellow spots on the dorsal side of its forew-

ings adjacent to the margin of the pronotum [1]. This

species is found mainly in tropical and subtropical regions

of Asia, Africa and Europe. G. bimaculatus has long been

used in a wide range of research fields, including insect

physiology, neurobiology, and behavior. In addition, the

study of G. bimaculatus as a model for hemimetabolous

insects has been greatly accelerated due to the discovery

over a decade ago of the effectiveness of RNA interfer-

ence (RNAi) methods as a tool for gene function analysis.

Additionally, its informative phylogenetic position makes

it a great model for evolutionary developmental studies of

insects [2]. Some of the advantages of using G. bimaculatus
as research model are the easy rearing systems [3],

detailed developmental staging tables [4], established

gene expression analysis methods [3], transgenic techni-

ques [5], cell tracking analysis methods using confocal

microscopy and light-sheet microscopy [6], rich transcrip-

tome resources [7–9], assembled and annotated genomes

[10��] and genome editing methods for gene knock-out

and knock-in [11,12��]. These techniques have helped to

make the hemimetabolous cricket G. bimaculatus a valu-

able new model organism in various fields [3,13].

Insects are also attracting attention as one of the next

generations of sustainable alternative protein sources for
ricketsQ2, an emerging model insect for biology and food science, Curr Opin Insect Sci (2022),
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Table 1

Orthopteran genomes available in NCBI asQ1 of October 2021

Name Suborder Family Length

(gb)

Scaffold n50

(bp)

Number of

genesa
Accession number and genome

database

Reference

Gryllus bimaculatus Ensifera Gryllidae 1.66 6 287 223 17 871 PRJDB10609 [10��]
http://gbimaculatusgenome.rc.fas.

harvard.edu

Laupala kohalensis Ensifera Gryllidae 1.60 583 478 12 767 PRJNA392944 [53]

Teleogryllus

occipitalis

Ensifera Gryllidae 1.93 214 129 20 768 PRJDB9056 [54]

Teleogryllus

oceanicus

Ensifera Gryllidae 2.05 62 615 19 157 PRJEB24786 [55]

http://www.chirpbase.org

Apteronemobius

asahinai

Ensifera Gryllidae 1.68 27 317 19 896 PRJDB11838 [81]

Locusta migratoria Caelifera Acrididae 6.53 322 700 17 307 PRJNA185471 [20]

http://www.locustmine.org/

Schistocerca gregaria Caelifera Acrididae 8.82 157 705 18 815 PRJEB38779 [21]

a Annotated protein coding genes are listed.

Table 2

Transcriptome data reported in the literature as of October 2021 for crickets of the family Gryllidae

Name Source Reference

Acheta domesticus Embryos, nymphs and adult of males and females [56]

Head and thorax [57]

Allonemobius fasciatus Male accessory gland [58]

Allonemobius socius Embryos [59]

Apteronemobius asahinai Female heads [60]

Male adult whole-body [61]

Dianemobius nigrofasciatus Ovaries [62]

Gryllodes sigillatus Male accessory glands [63]

Gryllus assimilis Male and female heads, testis, and ovary [64]

Gryllus bimaculatus Blastema [65]

Female mid-gut, male mid-gut, testes and ovaries [66]

Ovaries and embryos [8]

Ovaries and embryos [67]

Prothoracic ganglion [9]

Gryllus firmus Fat body, flight muscles [68]

Male accessory gland [69]

Gryllus pennsylvanicus Hindgut and malpighian tubules [70]

Male accessory gland [69]

Gryllus rubens Eggs, 1�6 instar nymphs, adult male and female [71]

Gryllus veletis Male nymph fat body [72]

Laupala cerasina Male and female, juveniles and adults [73]

Laupala kohalensis Nerve cord [74]

Teleogryllus commodus Male and female brain [75]

Teleogryllus emma Whole-body adult [76]

Teleogryllus occipitalis Muscle tissues [54]

Teleogryllus oceanicus Developing wing buds [77]

Heads, accessory glands, testes, and the remaining muscles and tissues [78]

Testis, accessory gland, male adult remaining tissue [79]

Male and female neural, thoracic and gonads [80]

C

umans and livestock. Food security is becoming a global

sue, as climate change and other factors devastate many

reviously stable agricultural industries. In addition, the

orld’s population is projected to grow to nine billion by

050, which will require a 70% increase in food produc-

on. The farming of crickets and other insects is seen as
Please cite this article in press as: Nakamura T, et al.: Genomics and genome editing techniques of

https://doi.org/10.1016/j.cois.2022.100881

urrent Opinion in Insect Science 2019, 49:1–8 
an excellent opportunity to enhance food security and

meet the growing demand for animal protein, while

reducing greenhouse gas emissions and the use of land,

water, and feed compared to conventional livestock farm-

ing. Crickets are already traditionally consumed in many

countries [14], and their market is growing as a next-
 cricketsQ2, an emerging model insect for biology and food science, Curr Opin Insect Sci (2022),
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Figure 1

FW

(b)(a)

HW

Gb-UbxKI

Current Opinion in Insect Science 

(a) Size comparison of adult G. bimaculatus male with D. melanogaster and T. castaneum. Scale bar: 1 cm. (b) GFP expression in the hindwing of

a Gb-Ubx KI heterozygous adult female. FW: forewing ; HW: hindwing.
generation food because of their high nutritional value,

general safety for human consumption, and the multiple

health benefits of incorporating crickets into the diet.

Large genome size in orthoptera
The genome size of orthopteran insect species is gener-

ally larger and more variable than that of other insects and

the suborder Ensifera is the most diverse group. Mea-

surements of genome sizes of 32 species belonging to the

Ensifera using flow cytometry showed that the difference

between the largest and smallest genome size was more

than 20-fold, from the male of Oecanthus sinensis (Grylli-

dae), 1C = 0.952 pg to the female of Deracantha onos
(Tettigoniidae), 1C = 19.135 pg [15]. Phylogenetic com-

parative analysis using genome size and mitochondrial

genome data of 32 ensiferan species showed no correla-

tion between genome size and body size or flight ability in

the Tettigoniidae [15]. Reconstruction of ancestral

genome sizes showed that the ensiferan genome size

has evolved such that the genome size of the grylloid

clade (the infraorder Gryllidea) tends to decrease and the

genome size of the non-grylloid clade tends to increase

[15].

The genome sizes of Polyneoptera tend to be relatively

larger than those of holometabolous species [10��,16].
The question of when and how variation in genome size

is acquired during evolution has been a perennial concern

for biologists. Major mechanisms contributing to genome

size variation include whole-genome duplication, chro-

mosomal aneuploidy, indels, gene duplications/deletions,

and repetitive DNA such as transposable elements (TEs)

[17,18]. There is no evidence to our knowledge support-

ing the occurrence of whole-genome duplication events

in the Orthoptera [19�]. Therefore, the contribution of

tandem repeat DNA and transposable elements is more

likely to be an important factor in both genome size and

variation in orthopterans. Indeed, evidence of high con-

tent of repeat elements in the grasshopper genomes is

provided by the recent sequencing of the entire genome
Please cite this article in press as: Nakamura T, et al.: Genomics and genome editing techniques of c
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of the migratory locust Locusta migratoria [20] and the

desert locust Schistocerca gregaria [21]. Recently, the

sequencing, assembly and annotation of the genomes

of G. bimaculatus [10��], the Hawaiian cricket Laupala
kohalensis [22] and Teleogryllus occipitalis [54] were

reported. Approximately 35–45% of the genomes of those

cricket species were occupied by repetitive DNA.

Although the genomes of L. migratoria and S. gregaria
are among the largest insect genomes ever sequenced at

6.5 Gb and 8.8 Gb respectively, the number of annotated

genes (17 307 and 18 815, respectively) is almost the same

as that of G. bimaculatus (17 871). This suggests that the

significant genome size difference between these orthop-

teran species is due to TE content, which is also corre-

lated with genome size in several eukaryotic species [23].

Comparing the genomes of these two crickets with those

of 14 other insect species supports the hypothesis that

relatively small ancestral insect genomes were expanded

to larger sizes in many lineages by TE activation [10��].

The genetic basis of cricket chirping
Adult male crickets produce songs by rubbing their

forewings, where they have sound-producing apparatus:

files and a scraper. The songs have three types of calls: a

calling song to attract females, a courtship song to court

approaching females and an aggressive song when males

fight with each other, each with a different rhythm and

pitch [24,25]. To date, much has been learned about the

shape of the file organ, the structural properties of the

wings involved in sound amplification, and the neural

activity patterns and behaviors that drive the wings.

However, the genes involved in the control of sound

production and how these genes are regulated to form

the sound-producing organs, have not been elucidated.

The analysis of the cricket genome revealed an expansion

in the number of pickpocket ( ppk) class V genes, which

belong to the Degenerin/epithelial Na+ channel (DEG/

ENaC) family [10��]. In Drosophila melanogaster, the pick-
pocket gene regulates neural mechanisms such as court-

ship behavior [26]. D. melanogaster abdominal ganglia
ricketsQ2, an emerging model insect for biology and food science, Curr Opin Insect Sci (2022),

Current Opinion in Insect Science 2019, 49:1–8
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C

licit courtship behavior through sensory neurons expres-

ng fruitless ( fru) and ppk genes, which are determinants

f male sexual behavior. In crickets, the abdominal gan-

lion plays a role in determining song rhythm. Interest-

gly, a transcriptome of the ganglion of the pronotal

gment showed enriched expression of ppk and fru genes

0��]. This suggests that the expression of ppk and fru

enes in the ganglion could be involved in the rhythmic

ontrol of sound production, a courtship behavior. Fur-

ermore, in L. kohalensis, where quantitative trait locus

TL) analysis has successfully identified genomic

gions associated with song rhythm during mating

ehavior, the ppk gene is also included within the

TL peak [22]. Taken together, the extended pickpocket
ene family in the cricket genome may play a role in

ontrolling the rhythmic wing movements and sound

erception required for mating.

enome editing of crickets
he rapid spread of next-generation sequencing technol-

gy has led to the sequencing of entire genomes of

rganisms that had not been previously analyzed. Scien-

sts now have access to larger amounts of genomic

quences than ever before [27,28]. These genomic data

llow scientists to develop technologies that enable

enome editing to explore gene functions for a mecha-

istic understanding of genomes and phenotypes [29].

NA interference (RNAi)-mediated gene silencing is a

owerful tool for functional gene study in non-model

rganisms. Within Orthoptera RNAi has been established

 G. bimaculatus, in which it is a very efficient and

onvenient method to effectively, rapidly (within a few

ours) and stably reduce the expression of target genes by

jecting double-stranded RNA (dsRNA) into fertilized

ggs or animals [2]. The RNAi method to knock down

ene expression is also effective in orthopteran insects

ther than G. bimaculatus. RNAi, however, has its limita-

ons because it cannot completely eliminate all the

anscripts of the targeted genes, which often hinders

searchers from comprehensively understanding gene

nctions.

dvanced functional genetic techniques commonly used

 modify genomes at specific sites in vivo include the

RISPR/Cas9, TALEN and ZFN systems [30]. These

ethods produce double-strand breaks in target DNA

quences that trigger cellular DNA repair mechanisms,

ch as non-homologous end joining (NHEJ) and homol-

gy-directed repair (HDR). DNA end-joining via NHEJ

 prone to mutations at the junction, resulting in inser-

ons or deletions at the break point [31]. All these

chniques are currently available and functioning in

rickets. The use of ZFNs and TALENs in crickets

as established in 2012, and was reported to successfully

reate homozygous gene knock-outs [11]. CRISPR/Cas9

as also been used to develop homozygous gene knock-

uts of cricket genes [32].
Please cite this article in press as: Nakamura T, et al.: Genomics and genome editing techniques of
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The generation of gene knock-out lines via NHEJ using

the CRISPR/Cas9 system has also been reported in

another orthopteran species, the locust L.
migratoria. Some locust species change from a cryptic

solitary behavioral stage to a swarming collective behav-

ioral stage when the local population density increases,

resulting in catastrophes and serious agricultural damage.

Olfactory stimuli play an essential role in guiding insect

behavior including swarm formation in locusts. Accord-

ingly, locust gene knock-out mutants made with the

CRISPR/Cas9 system targeting Orco, an olfactory recep-

tor co-receptor [33] and the odorant receptor gene Or35

[34], lost their attraction response to aggregation pher-

omones. These results open the door to new ideas for pest

control through the use of genome editing to avoid swarm

formation.

In recent years, gene knock-in using the CRISPR/Cas9

system has also been developed for G.
bimaculatus. Methods based on the HDR system can

accurately integrate donor sequences into the genome,

and thus are well known for generating gene knock-in

mutants. However, due to the low efficiency of HDR in

eukaryotes, gene knock-in has only been reported in a

few insect species [35], including D. melanogaster [36],

several mosquitoes [37,38], Tribolium castaneum [39��] and

the Mediterranean fruit fly [40]. Unfortunately, to our

knowledge, it has never been reported to be successfully

applied in Orthoptera. An alternative efficient gene

knock-in method using NHEJ was developed in zebrafish

[41]. In this method, both the genome and the donor

vector are cleaved in vivo, and then the terminal genome

sequence and the donor sequence are bound by NHEJ.

This method can efficiently integrate long constructs into

the genome [41], and it has been used in D. melanogaster to

insert donor plasmid into the target genome locus [42,43].

A similar method has also been developed for the cricket

G. bimaculatus. In this case, the donor vector containing an

expression cassette with the G. bimaculatus actin promoter

followed by the eGFP coding sequence was knocked into

an exon of the Hox genes Ultrabithorax and abdominal-
A. The resulting animals displayed GFP expression that

recapitulated the endogenous Hox gene expression (Fig-

ure 1b). This approach has revealed that gene knock-in

can function efficiently by a homology-independent

NHEJ method in G. bimaculatus [12��]. Furthermore, this

homology-independent method is cost effective and sim-

pler than the homology-dependent method, as a donor

plasmid does not need to be newly made for each target

region [12��].

To obtain genome edited offspring, it is necessary to

efficiently deliver Cas9 and the gRNA ribonucleoprotein

(RNP) complex to the cells of the germ line. In D.
melanogaster, this is now readily achieved by injecting

sgRNA into transgenic embryos that express Cas9 under a

germ cell-specific promoter. Gene editing of arthropods
 cricketsQ2, an emerging model insect for biology and food science, Curr Opin Insect Sci (2022),

www.sciencedirect.com
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in most cases, however, has been performed by microin-

jection of gRNA with Cas9 mRNA or protein into a

fertilized egg [44,45]. Microinjection is a difficult skill

to acquire and its feasibility depends on the species’ egg

physical characteristics, including egg size, resistance to

injection, presence of ootheca (the egg case of cock-

roaches and mantises), and robustness of subsequent

embryonic development. To overcome these microinjec-

tion drawbacks, the Receptor-Mediated Ovary Transduc-

tion of Cargo (ReMOT Control) technique was recently

developed [46]. This technique allows researchers to

perform easy injections into the adult female hemolymph

and take advantage of a small ovary-targeting peptide to

introduce RNP directly into the developing ovary. Yolk

proteins are synthesized in the D. melanogaster fat body

and secreted into the hemolymph, then transported to the

ovaries during vitellogenesis by receptor-mediated endo-

cytosis. Fusing a peptide ligand named P2C, derived from

D. melanogaster Yolk Protein 1, to Cas9 protein can allow

delivery of the RNP complex into the ovary. The reagents

chloroquine or saponin help the P2C-RNP complex be

released from endosomes and reach the oocyte cytoplasm.

This method can enable targeted gene modification

bypassing difficult microinjection into eggs. To date,

gene modification via ReMOT Control has been tested

widely in many insect species including Aedes aegypti [46],

Anopheles stephensi [47], Bemisia tabaci [48�], T. castaneum
[49] and Nasonia vitripennis [50] and even in the Cheli-

cerate, Ixodes scapularis [51].

Drosophila Yolk Protein, the source of the P2C ligand, is

conserved only in higher Diptera, suggesting that using

Drosophila P2C may be less effective in other insects.

Indeed, P2C ligand-based ReMOT Control in the non-

dipteran insects T. castaneum (Coleoptera) and B. tabasci
(Hemiptera) has been reported to be less efficient than in

mosquitoes. Therefore, it is important to develop a tag

that can deliver RNPs to the ovary by ReMOT Control in

a wide range of insect species. One possible approach is to

develop a tag based on vitellogenin, since vitellogenin is

the major egg yolk protein in a wide range of animal

species. It has been reported that the synthetic peptide

tag from native vitellogenin allows efficient delivery of an

RNP into the ovary in B. tabasci, a species in which the

use of P2C ligand was ineffective [48�]. ReMOT Control

usage is currently limited to generating knock-outs. How-

ever, by using modified Cas9 proteins, the range of

applications could be greatly expanded. Recently, Aird

and colleagues reported that the use of ssDNA-tethered

Cas9, in which ssDNA is covalently linked to Cas9, can

improve low HDR efficiency by bringing the DNA repair

machinery and donor DNA into spatiotemporal proximity

[52]. Furthermore, the potential applications of Cas9

range from targeted genome editing, to targeted genome

regulation (by binding epigenetic effector domains to

Cas9, or by competing with endogenous DNA binding

factors). The combination of ReMOT Control with these
Please cite this article in press as: Nakamura T, et al.: Genomics and genome editing techniques of c
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applications should therefore be applicable to gene

knock-outs, knock-ins and expression control.

Conclusion
Transcriptome data, genome assemblies and gene anno-

tations for different orthopteran insect species have

recently been made publicly available. In addition, the

remarkable innovations in genome editing technologies

have enabled functional genomics studies of orthopteran

insects, which were previously challenging. These novel

gene editing techniques and the genomic information

available for orthopteran species might revolutionize not

only those research fields that traditionally use insects,

but also new fields that might become attracted to the use

of orthopteran insects. Among those fields that might turn

to orthopteran species are agriculture, which aims to

improve the nutritional value and productivity of crickets

and reduce their allergen content; biomimetics, which

focuses on sound production and auditory systems; and

pharmaceutical production as bioreactors using crickets.
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